zaseche99
?>

Найди коэффициент k в уравнении параболы y=kx2 зная что парабола проходит через точку a(11 726))

Алгебра

Ответы

vbg238
1) графически:
надо построить графики функций y=|x+3| и y=|x+5|, тогда координата x их точки пересечения будет корнем этого уравнения:
1) y=|x+3|
x=-3; y=0
x=0; y=3
x=-4; y=1
x=1; y=4
2) y=|x+5|
x=-5; y=0
x=0; y=5
x=-6; y=1
x=1; y=6
графики в приложении: красным цветом - функция y=|x+3|, синим - y=|x+5|
эти графики пересекаются в точке (-4;1) откуда следует, что уравнение имеет 1 корень x=-4
2) аналитически:

1)x+3=x+5, x+3>=0; x>=-3 и x+5>=0; x>=-5
0x=-2
x - нет корней
2)-x-3=x+5, x<=-3 и x>=-5
-2x=8
x=-4 - верно
3) x+3=-x-5, x>=-3 и x<=-5
x - нет корней
4) -x-3=-x-5, x<=-3 и x<=-5
0x=-2
x - нет корней
в итоге получили 1 корень: x=-4
ответ: x=-4

15 ,решить аналитически и графически уравнение |x+3|=|x+5|
Alyona744
1) sin4x + sin3x + sin2x = 0
Преобразуемой первое и последнее слагаемое по формуле суммы синусов
2sin[(4x + 2x)/2]cos[4x - 2x]/2] + sin3x = 0
2sin3xcosx+ sin3x = 0
sin3x(2cosx + 1) = 0 
sin3x = 0
3x = πn, n ∈ Z
x = πn/3, n ∈ Z
2cosx + 1 = 0
cosx = -1/2
x = ±2π/3 + 2πk, k ∈ Z
ответ: x = πn/3, n ∈ Z; ±2π/3 + 2πk, k ∈ Z.

2) 2sin²x + 3sinxcosx + cos²x = 0          |:cos²x
2tg²x + 3tgx + 1 = 0
2tg²x + 2tgx + tgx + 1 = 0
2tgx(tgx + 1) + (tgx + 1) = 0
(2tgx + 1)(tgx + 1) = 0
2tgx + 1 = 0
tgx = -1/2
x = arctg(-1/2) + πn, n ∈ Z.
tgx + 1 = 0
tgx = -1
x = -π/4 + πk, k ∈ Z.
ответ:  arctg(-1/2) + πn, n ∈ Z; -π/4 + πk, k ∈ Z.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найди коэффициент k в уравнении параболы y=kx2 зная что парабола проходит через точку a(11 726))
Ваше имя (никнейм)*
Email*
Комментарий*