sawa-msk
?>

у меня всего 2 часа.Хотя-бы 1 задание

Алгебра

Ответы

Михайлович1309

Это какой класс?

Алгебра?

oksanata777
За первый час турист поднялся на 500м
за второй час 500-25=475 м 

мы получаем арифметическую прогрессию, где 
а₁=500, d= -25

Сумма n членов прогрессии равна 3300м

вспомним формулу суммы

теперь подставим наши данные и найдем n

выбираем наименьший корень 

n=8

Значит через 8 часов поднимется на высоту 3300м


почему выбираем наименьший корень

наше уравнение парабола и в двух точках у нее будут одинаковые значение

т.е. при 8 часов будет высота 3300м и при 33 час 
но при этом через 33 часа возможно турист будет уже спускаться) 
rusinfopro
1)
Можно рассмотреть функцию y1=x(x-2) это парабола, точки пересечения с осью OX в точках 0 и 2. Минимум которой находится в точке x(min)=2/2=1 y(min)=-1  

2)
y2=(a+1)(|x-1|-1)
на отрезке  [1;+oo) есть функция y2=(a+1)(x-2)   
на отрезке (-oo;1) есть функция   y2=-(a+1)x  
Точки пересечения функции y1 и y2
 x-2=-x  откуда  A(1,-(a+1))  
 
3) 
Неравенство y1<=y2 можно интерпретировать по отношению к графикам функций так,  при каких значениях прямые y2=(a+1)(x-2) и
y2=-(a+1)x  пересекают параболу y1=x(x-2)

4)
Рассмотрим равенство параболы к одной из прямых x(x-2)=(a+1)(x-2) 
найдем при каких значениях существуют решения, при x>=1  
(x-2)(x-a-1)=0 
x=2   
x=a+1 
то есть решения данного неравенства y1<=y2 при x>=1 и при a>1 будет интервал  x E [2,a+1]   
Аналогично и и при второй прямой получим решение  x E [1-a,0] при a>1  и x<1 
То есть получаем два решения x E  [1-a,0] U [2,a+1] при a>1  (не подходит)

6)  
При 0<a<1 имеем так же два решения , при подстановке любого числа в вышеописанный интервал дает решения  x E [0,1-a] U [a+1,2]   

7) При a=0 так же получаем решение x E [0,2]  

8) a=1 получаем x=0, x=2 (не подходит)
 
9) При a<0 получаем [0,1+a] U [1-a,2] так как 1+a>=1-a то решение
x E [0,2] 

10)    
По условию задачи, надо выбрать то множество решении, в котором присутствует число b1=1.7 по пункту 6,  при 0<a<1 получаем решение x E [0,1-a] U [a+1,2] приравнивая a+1=1.7 получаем  a=0.7 то есть при a<=0.7 получаем решения в котором будет число b1=1.7. Так как прогрессия убывающая, то остальные члены прогрессии, можно выбрать из первого x E [0,1-a] при 0<q<1.

Значит объединяя решения получаем
x E [0,2] при a<=0 подходит (число b1=1.7 входит) и a<=0.7 
Объединяя получаем a<=0.7    

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

у меня всего 2 часа.Хотя-бы 1 задание
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

club-pushkin
filternovo
MDubovikov73
Aleksandr_Vasilev
Bsn1704
Olegovich Nikolaevna
pannotolstova488
slazurnaya
НосовЖелиховская
bestform
ooottdi
podenkovaev314
ortopediya
info2990
blagorodovaanna375