Здесь последовательно находим абсциссы х=-0,5; х=-2,5; х=-1; х=2, проводим прямую, параллельно оси оу до точки пересечения с графиком и называем, чему в этой точке равна ордината.
2) f(x)=-2,5, если х = 5 ; f(x)=-2, если х=3,5;
f(x)=0, если х=-3, х=-1, х=1,5;
f(x)=2, если х=0; х=-1,5, х=-2,5.
Здесь наоборот, по известной ординате, у=-2,5; у=-2; у=0; у=2 находим абсциссу х, их может быть несколько, т.к. прямая, параллельная оси ох пересекает график в нескольких точках, опускаем из этих точек перпендикуляры на ось ох и читаем ответы
3) Е(у) = [-2,5; 3]- это те значения, которые пробегает у. самое маленькое у=-2,5, самое большое у=3.
Verdievruslan
02.12.2020
Считаем по умолчанию что кости шестигранные и одинаковые. Количество возможных исходов - 6*6*6=216 Для того, чтобы произошло событие А, должны осуществиться три события «выпадает грань х»: 1/6*1/6*1/6= 1/216 Появление не более двух единиц, подходящие исходы: 111, 101, 110, 011 1 - выпала единица, 0 - выпала не единица Вычисляем вероятность для каждого случая. Сумма полученных вероятностей будет ответом. 1/6*1/6*1/6+1/6*5/6*1/6+1/6*1/6*5/6+5/6*1/6*1/6=1/216+5/216+5/216+5/216=16/216=2/27
Это ответ от дилетанта.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Используя данную частотную таблицу, определите относительную частоту получения
1) f(-3,5) = -0.5; f(-2,5) = 2; f(-1) = 0; f(2) = -1.
Здесь последовательно находим абсциссы х=-0,5; х=-2,5; х=-1; х=2, проводим прямую, параллельно оси оу до точки пересечения с графиком и называем, чему в этой точке равна ордината.
2) f(x)=-2,5, если х = 5 ; f(x)=-2, если х=3,5;
f(x)=0, если х=-3, х=-1, х=1,5;
f(x)=2, если х=0; х=-1,5, х=-2,5.
Здесь наоборот, по известной ординате, у=-2,5; у=-2; у=0; у=2 находим абсциссу х, их может быть несколько, т.к. прямая, параллельная оси ох пересекает график в нескольких точках, опускаем из этих точек перпендикуляры на ось ох и читаем ответы
3) Е(у) = [-2,5; 3]- это те значения, которые пробегает у. самое маленькое у=-2,5, самое большое у=3.