ответ: а) нет
б) да
в) нет
Объяснение:
Так как график функции y=a/x проходит через точку А(-3;3), то её координаты подставим в уравнение функции:
А(-3;3), х=-3,у = 3.
3 = а · ( -3 )
а = 3 : ( -3 )
а = - 1
Значит, функция задана уравнением у = - х.
Проверим, принадлежат ли точки B, C, D графику этой функции. Подсавив координаты проверим истинность равенств.
а) B(-1;9), х = -1, у = 9
9 = - ( - 1)
9 ≠ 1, значит B(-1;9) не принадлежит графику.
б) C(3;-3), х = 3, у = -3
- 3 = - 3, верно, значит C(3;-3) принадлежит графику.
в) D(1;-9), х = 1, у = -9
-9 ≠ - 1, значит D(1;-9) не принадлежит графику.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите координаты точек пересечения гиперболы y = 3/x и y = x - 2
Пусть (x₀;y₀) - точка касания. Так как точка (x₀;y₀) находится на параболе y=x², то точка имеет координаты (x₀;x²₀)
0 < x₀< 6
Уравнение касательной к кривой y=f(x) в точке (x₀;y₀) имеет вид:
y- f(x₀)=f`(x₀)(x-x₀)
f`(x)=2x
f`(x₀)=2x₀
y -x²₀ =2x₀(x-x₀)
y=2x₀x - x²₀ - уравнение касательной
Касательная пересекает ось Ох в точке A(x₀/2)
2x₀x - x²₀=0
x₀(2x - x₀)=0
х=x₀/2
Касательная пересекает прямую х=3 в точке B(3; 6x₀ - x²₀)
y=2x₀ 3 - x²₀
y = 6x₀ - x²₀
Пусть С(3;0)
BC=6x₀ - x²₀
AC=3-(x₀/2)
S_(Δ)=(1/2)AC*BC=(1/2)(3-(x₀/2))·(6x₀ - x²₀) - исследуем функцию на экстремум на [0;3]
Обозначим x₀=t
S(t)=(1/2)(3-(t/2))·(6t - t²)
S(t)=(1/4)(6-t)·(6t - t²)
S(t)=(1/4)*F(t)
F(t)=t(6-t)^2
S(t) принимает наибольшее значения в тех же точках, в каких и F(t)
Исследуем на [0;3]
F`(t)=t`·(6-t)²+t·((6-t)²)`=(6-t)²+t·2(6-t)·(6-t)`=(6-t)(6-t-2t)=(6-t)(6-3t)
F`(t)=0
6-t=0 ⇒ t=6 не принадлежит [0;3] или 6-3t=0 ⇒ t=2 принадлежит [0;3]
t=2 - точка максимума, производная меняет знак с + на -
О т в е т. S(2)=(1/4)(6-2)·(6·2 - 2²) ; S(2)=8 - наибольшее значение