marvindkc
?>

Решите до сегодняшнего вечера

Алгебра

Ответы

info2
Решаем сначала уравнение вида (х^2-9)*(х-6)=0
(x-3)(x+3)(x-6)=0
корни уравнения: x=3, x=-3, x=6
рисуем прямую х и отмечаем эти точки на ней
     -          +            -             +
_____.______.________.___
       -3             3               6         
и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство
если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0
если x∈(-3;3) знак "+" (2²-9)(2-6)>0
если x∈(3;6) знак "-" (4²-9)(4-6)<0
если x∈(6;+∞) знак "+" (7²-9)(7-6)>0

нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)

Решение следующей задачи в приложении

(х^2-9)*(х-6)> 0 решение неравенства
gorbunova188

y = f(x)

Сначала осознаем как должен выглядеть график (рис. 1):

Рисуем прямые x = -5  и  x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4  и  y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).

Теперь построим график функции (рис. 2):

Для простоты построим график ломанной (она непрерывна и просто изображается).

Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной  в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.
Изобразите график какой-нибудь непрерывной функции y=f(x), которая обладает следующими свойствами: 1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите до сегодняшнего вечера
Ваше имя (никнейм)*
Email*
Комментарий*