Овезова Игорь
?>

Запиши наименьшее и наибольшее значения функции y=sinx на отрезке [−π6;5π6].

Алгебра

Ответы

katrin50
Решение.
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции 
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.
nataliarogacheva
Что-то последнее непонятно. что 3п/2? там обычно должно быть написано, к какой четверти принадлежит угол. может, от 3п/2 до 2п?
короче, sinа = корень из 1-cos^2а = корень из 1 - 16/25=корень из 9/25= 3/5 (тут важно знать, к какой четверти принадлежит угол. внимательно задание читай, если от 3п/2 до 2п - то будет -3/5, если от 0 до п/2, то +3/5, если от п/2 до п, то +3/5, если от п до 3п/2, то -3/5
sin2а = 2sinacosa = 2*3/5*4/5=0,96 (или МИНУС 0,96, в зависимости от предыдущего действия, с каким знаком получился синус)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Запиши наименьшее и наибольшее значения функции y=sinx на отрезке [−π6;5π6].
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vsnimschikov391
magsh99
info292
Maksimova1320
tvtanya80
stairov536
kas80
kosbart28
Kushchenko-Monashev
AlekseiBunina1895
sbn07373
daryagulyaeva
nst-33764
Maksim Dmitrii1579
osandulyak