( x + 2xy ) * ( 2x - 1 )
x-y x^2-2xy+y^2 x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2)* ( 2x - 1 )
(x-y) (x^2-2xy+y^2 ) x+y
(x^3-2x^2y+y^2x+2x^2y-2xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
(x^3-xy^2) *(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x(x^2-y^2)*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x((x-y)(x+y)))*(2x - 1 )
(x-y) (x^2-2xy+y^2 )( x+y)
x*(2x - 1 )
(x^2-2xy+y^2 )
x*(2x - 1 )
(x-y)^2
подставляем
-2(-4-1) = 10
9 9
Поделитесь своими знаниями, ответьте на вопрос:
При каких значениях а точка М (а; -2а) принадлежит графику функции y = 8x + 6?
y=2x-9
y=x^2+bx
x^2+bx=2x-9,
x^2+(b-2)*x+9=0.
Квадратное уравнение в общем случае имеет два решения, значения х дадут абсциссы точек пересечения. У нас же прямая является касательной. Значит прямая и парабола имеют только одну общую точку. Это возможно только в том случае, когда дискриминант квадратного уравнения равен нулю. Это условие позволяет найти "b".
D=(b-2)^2-4*1*9=0,
b^2-4b-32=0,
b=8 или b=-4.
По условию b>0< значит b=8.
Подставляем это значение в квадратное уравнение:
x^2+6x+9=0,
x=(-3).