Daulyatyanov1266
?>

Составьте приведенное квадратное уравнение x2+px+q=0, если известны его корни x1=−5 и x2=−3.

Алгебра

Ответы

gorodof4292

Воспользуюсь теоремой Виета:

x1+x2=−p, x1x2=q.

Найду -p и q:

-p=-5+(-3)=-8, p=8;

q=-5×(-3)=15.

Искомое уравнение с корнями -5 и -3:

х²+8х+15=0.

denblacky

1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.

Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.

А значит ответ нет.

2) Заметим, что искомая сумма a_1+a_2+...+a_1a_2...a_{10}=(a_1+1)(a_2+1)...(a_{10}+1)-1.

И правда. Пусть P(k) - сумма всех комбинаций по 1 ... по k элементов. Тогда P(k+1)=a_1+...+a_k+a_1a_2+...+a_1...a_k+a_{k+1}(1+a_1+...+a_k+a_1a_2+...+a_1...a_k)=(a_{k+1}+1)(a_1+...+a_k+a_1a_2+...+a_1...a_k)+a_{k+1}=(a_{k+1}+1)(P(k)+1)-1\\ P(1)=a_1=(a_1+1)-1

(a_1+1)(a_2+1)...(a_{10}+1)-1

Т.к. числа отрицательны, то a_i+1\leq 0 \:\forall i

Если хотя бы одно из a_i=-1, вся сумма равна -1.

В остальных случаях a_i+1\leq -1 - всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что (a_1+1)(a_2+1)...(a_{10}+1).

А тогда сумма могла равняться только -1

ryazantseva
Решение нестандартное немного, надеюсь, что поймешь.
Краткий экскурс:
Возьмем, например, уравнение x^2-11x+30=0.
У него два корня: +5 и +6 
И это уравнение можно записать в виде (x-5)(x-6)=0. Убедись сам/а, перемножив все слагаемые и приведя к общему виду.
И так, по заданию один из корней равен 4.
Тогда: (x-4)(x-n)=0
x-4 я надеюсь понял/а что такое, а вот n - это второй корень уравнения.
Смотрим еще раз наше уравнение исходное.
x^2+px+c=0
c=36
на что надо домножить -4 чтобы получить 36?
-4x=36;
x=36/-4=9
Подставляем n=9

(x-4)(x-9)=0
Перемножим слагаемые
x^2-9x-4x+36=0;
x^2-13x+36=0
p=-13.
Один по крайней мере нашел.
Очень надеюсь, что доступно объяснил. :)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Составьте приведенное квадратное уравнение x2+px+q=0, если известны его корни x1=−5 и x2=−3.
Ваше имя (никнейм)*
Email*
Комментарий*