Строим графики функций. y=-x²+6x-7 - парабола с ветвями вниз. y=2x+a - прямая y=2x, которая перемещается вдоль оси Oy в зависимости от значения a (картинка 1).
При некотором a прямая будет касательной к параболе (картинка 2). В таком случае уравнение -x²+6x-7=2x+a будет иметь один корень, что соответствует нулевому дискриминанту.
-x²+6x-7=2x+a ⇒ x²-4x+7+a=0
D=16-4(7+a)=16-28-4a=-4a-12 ; -4a-12=0 ⇒ a=-3
При меньших a прямая будет пересекать параболу в двух точках (картинка 3). Получим окончательный ответ a∈(-∞; -3]
ответ: a∈(-∞; -3]
Поделитесь своими знаниями, ответьте на вопрос:
Нарисуйте график функции y = f (x) и запишите верхний и нижний выпуклые интервалы графика. 1)y=sin0. 5x2)y=cos2x 3)y=x3
2ылаоол2алвтвзатудмлудплктадтудп