Объяснение:
a) найдем производную функции
f'=2x приравняем к нулю x=0
если x<0 то, производная имеет знак -
если x>0 то, производная имеет знак +
Таким образом при x=0 функция имеет минимальное значение, это удовлетворяет указанному отрезку x∈[-5;2]
b)
скорее всего условие неправильно записано, иначе
f(x)=3 просто прямая, не имеющая пересечения с Оx
или же
f=-3x+6, тогда
найдем производную функции
f'=-3 как видим производная не равна нулю, а следовательно, данная функция не имеет минимумов или максимумов
Объяснение:
a) найдем производную функции
f'=2x приравняем к нулю x=0
если x<0 то, производная имеет знак -
если x>0 то, производная имеет знак +
Таким образом при x=0 функция имеет минимальное значение, это удовлетворяет указанному отрезку x∈[-5;2]
b)
скорее всего условие неправильно записано, иначе
f(x)=3 просто прямая, не имеющая пересечения с Оx
или же
f=-3x+6, тогда
найдем производную функции
f'=-3 как видим производная не равна нулю, а следовательно, данная функция не имеет минимумов или максимумов
Поделитесь своими знаниями, ответьте на вопрос:
Из чисел −1;5–√;16 и 3/16 выбери числа, которые являются решением неравенства 12x>x+11 1)√5 2)316 3)−1 4)16
12х=х+11
х+11=12х
х-12х=-11
-11х=-11
х=1