Ромб и квадрат имеют одинаковые стороны. Найдите площадь ромба, если его острый угол равен 30°, а площадь квадрата равна 100. Варианты ответа, 1) 50 2) 150 3) 10 4) 45
За 1 день они оба выполнять 2/3:4 = 2/12 = 1/6 всей работы. Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней. За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы. Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.
Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным. Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.
Бражинскене_Алексей
13.12.2020
За 1 день они оба выполнять 2/3:4 = 2/12 = 1/6 всей работы. Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней. За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы. Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.
Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным. Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Ромб и квадрат имеют одинаковые стороны. Найдите площадь ромба, если его острый угол равен 30°, а площадь квадрата равна 100. Варианты ответа, 1) 50 2) 150 3) 10 4) 45
Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней.
За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы.
Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.
Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным.
Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.