1)х∈(-∞, -1), решение системы неравенств.
2)х∈ (-8, 9), решение системы неравенств.
3)х∈(-0,25, 1], решение системы неравенств.
Объяснение:
1) Решить систему неравенств:
−x+4>0
5x<−5
-х> -4
x< -1
x<4 знак меняется х∈(-∞, 4) интервал решений
x< -1 х∈(-∞, -1) интервал решений
Неравенства строгие, скобки круглые.
Отмечаем на числовой оси оба интервала и ищем пересечение решений, то есть, такое решение, которое подходит двум данным неравенствам.
Пересечение х∈(-∞, -1), это и есть решение системы неравенств.
2) Реши систему неравенств:
x²−81<0
x+8>0
Приравняем первое неравенство к нулю и решим квадратное уравнение:
x²−81=0
x²=81
х₁,₂=±√81
х₁= -9
х₂=9
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -9 и х=9. По графику ясно видно, что у<0 при х от -9 до 9, то есть, решения неравенства в интервале
х∈ (-9, 9), это решение первого неравенства.
Неравенство строгое, скобки круглые.
Теперь решим второе неравенство:
x+8>0
x> -8
х∈ (-8, +∞), это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Пересечение х∈ (-8, 9), это и есть решение системы неравенств.
3) Реши систему неравенств:
-x>x−2(5x+1)
8−x≥(1+3x)²−9x² в правой части разность квадратов, раскрыть по формуле:
-х>x-10x-2
8-x>=(1+3x-3x)(1+3x+3x)
-x> -9x-2
8-x>=1*(1+6x)
-x+9x> -2
8-x>=1+6x
8x> -2
-x-6x>=1-8
x> -2/8
-7x>= -7
x> -0,25 х∈(-0,25, +∞), это решение первого неравенства.
Неравенство строгое, скобки круглые.
x<=1 х∈(-∞, 1], это решение второго неравенства.
Неравенство нестрогое, х=1 входит в число решений, скобка квадратная. У знаков бесконечности скобка всегда круглая.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Пересечение х∈(-0,25, 1], это и есть решение системы неравенств.
Поделитесь своими знаниями, ответьте на вопрос:
Реши систему уравнений методом подстановки. {−z−2y+2=5z=−6−y ответ: z= y=
(-2-1)^2+3^2=18
9+9=18
18=18
Да, является
2) Это окружность с центром (-1;2) и радиусом 4
3) a)
у=3-x^2 - график парабола, ветви направлены вниз, график поднять вверх 3 еденицы
y=x-3 - график прямая проходящая через точку (0;-3) и (3;0)
ответ: (-3;-6), (2;-1)
4) Методом подстановки
2y^2-y^2=14
3x+2y=5
Из уравнения 2 выразим переменную х
x=(-2y+5)/3
2*((-2y+3)/3)²-y²-14=0
y²+40y+76=0
по т. ВИета
y1=-38
y2=-2
x1=27
y2=3
ответ: (27;-38), (3;-2)
{3x^2+y^2=7|*(-2)
{x^2+2y^2=9
{-6x^2-2y^2=-14
{x^2+2y^2=9
-5y^2=-5
y^2=1
y=±1
x1=2
x2=1
ответ: (-1;-2), (1;-2), (-1;2), (1;2)