ambstroy
?>

Сколько пятизначных чисел с разными цифрами можно составить из цифр

Алгебра

Ответы

stusha78938

Количество равно числу размещений из 6 элементов по 5:

A_6^5=\dfrac{6!}{(6-5)!}=6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720.

ответ: 720 чисел.

abuley
1. (4*x-7)^2 = Ι (4*x-7) Ι
заметим, что 
I t I² =t²,  ⇒  (4*x-7)^2= Ι (4*x-7) Ι²  ⇒ пусть  Ι (4*x-7) Ι=y ⇔

 y²=y ⇔y(y-1)=0      ⇔        1) y=0        2)  y-1=0   ⇒ y=1  ⇒  Ι (4*x-7) Ι=1

      1) y=0  ⇒   Ι (4*x-7) Ι=0    ⇒4*x-7=0  ⇒x=7/4
проверка x=7/4
(4*x-7)^2 = Ι (4*x-7) Ι      (4*(7/4)-7)^2 = Ι (4*(7/4)-7) Ι      0=0 верно

2) Ι (4*x-7) Ι=1     ⇔  
     2.1)  4*x-7=1  ⇔ x=2    

проверка x=2    (4*2-7)^2 = Ι (4*2-7) Ι    1=1 верно 
       
   2.2)  4*x-7=-1  ⇔ x=6/4   x=3/2 
проверка x=3/2    (4*(3/2)-7)^2 = Ι (4*(3/2)-7) Ι    1=1 верно 

ответ: x=7/4,   x=2,    x=3/2 .

2.
Ι (3x^2-3x-5) Ι=10  ⇔
1) (3x^2-3x-5) =10         2) (3x^2-3x-5) =-10

1)  (3x^2-3x-15) =0   D=9+4·3·15=9(1+20)>0

x1=(3-3√21)/6 =(1-√21)/2     x2=(1+√21)/2

 2) (3x^2-3x+5) =0    D=9-4·3·5=<0 нет решений

  ответ:
x1=(1-√21)/2     x2=(1+√21)/2
bmargarita
Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀.
1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства
|x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем
2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 
2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства
2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сколько пятизначных чисел с разными цифрами можно составить из цифр
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vyacheslavovich Mikhailovich1421
aerendzhenova5
northwest7745
annanudehead1426
aleksey270593
ddavydov1116
emartynova25
mzia-mzia-60682
artemkolchanov24
kate281078
alicia179
AleksandrIvanovich1273
Панков1101
ВалерийАндреевна1788
НУЖНО СДЕЛАТЬ ТОЛЬКО 4 ЗАДАНИЕ!
Светлана