tvshi
?>

Любые задания кроме очень с решением

Алгебра

Ответы

apetit3502

   

План-конспект урока

Алгебра

8 класс

Тема: Доказательство неравенств

Цель:

Образовательная: формирование умений доказательства неравенств, формирование

Этапы занятия:

Организационный момент.

Актуализация опорных занятий.

Усвоение новых знаний и действий.

Первичное закрепление знаний и действий.

Контроль и самопроверка знаний, рефлексия.

Подведение итогов занятий.

ХОД ЗАНЯТИЯ

1. Организационный момент. Подготовка учащихся к работе на занятии.

2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.

а) С неравенств сравниваются большие и малые величины;

b) Во С какого приема мы умеем доказывать неравенство вида aответ:

- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);

c) Повторим данное доказательство на примере неравенства Коши.

“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 

Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.

Значит,   – верное неравенство.

3.

a) Во Попробуем сформулировать другой прием.

ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:

(a-b)2  0, (a+b)2  0 или неравенства Коши   , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;

b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.

Доказательство: Рассмотрим a+b и ab+1.

Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.

Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.

4. Докажем: 

Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.

Значит, данное неравенство  верно.

Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?

ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)

Объяснение:

как то так, неуверен

moisalexx7
(x+2)(x-4)<0

Подробное объяснение:
1) Ищем нули функции:
    первая скобка равна нулю при х=-2
    вторая скобка равна нулю при х=4
2) Рисуем числовую ось и расставляем на ней найденные нули 
    функции - точки  -2 и 4
    (-2)(4)
   Точки рисуем с пустыми кружочками ("выколотые"), т.к.
   неравенство у нас строгое (знак < )

3) Начинаем считать знаки на каждом интервале, начиная
    слева-направо. Для этого берём любую удобную для подсчёта 
    точку из интервала, подставляем её вместо икс  и считаем знак:
    1. х=-100   -100+2 <0   знак минус
                      -100-4 <0   знак минус
      минус*минус=плюс
     Ставим знак плюс в крайний левый интервал
               +
    (-2)(4)
  
  2. аналогично, 
      х=0   0+2 >0  знак плюс
              0-4 <0   знак минус
     плюс*минус=минус
            +                      _
  (-2)(4)

3.  x=100   100+2>0  знак плюс
                  100-4>0  знак плюс
    плюс*плюс=плюс
            +                          -                         +
   (-2)(4)

Итак, знаки на интервалах мы расставили.
Смотрим на знак неравенства: < 0 Значит, нам надо взять 
только те интервалы, где стоят минусы.
В данном случае, такой интервал один (-2;4)
Это и есть ответ.

Теперь краткая запись решения:
(х+2)(х-4)<0
              +                          -                         +
   (-2)(4)

x∈(-2;4)
ответ: (-2;4)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Любые задания кроме очень с решением
Ваше имя (никнейм)*
Email*
Комментарий*