oyudina
?>

Знайти найбiльший спiльний дiльник двох полiномiв F(X)=9x^6 − 21x^5 + 13x^4 − 17x^3 + 10x^2 − 7x − 2 G(X)=3x^5 − 5x^4 + x^3 − 6x^2 + x − 2

Алгебра

Ответы

Mikhail1369

Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени.  Эта функция в общем виде может быть представлена как y = ax + b, где a  и b - любые числа ( в нашем случае a = 1, а b = 4/3).

Функция  y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить  y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.

Viktorovich

Объяснение:

Уравнение касательной имеет вид:

y=f(x_0)+f'(x_0)(x-x_0)y=f(x

0

)+f

(x

0

)(x−x

0

)

Дана функция:

f(x)=-x^2-4x+2f(x)=−x

2

−4x+2

Найдём значение функции в точке x₀:

f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x

0

)=f(−1)=−(−1)

2

−4⋅(−1)+2=−1+4+2=5

Найдём производную функции:

f'(x)=-2x^{2-1}-4=-2x-4f

(x)=−2x

2−1

−4=−2x−4

Найдём производную функции в точке x₀:

f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f

(x

0

)=f

(−1)=−2⋅(−1)−4=2−4=−2

Подставим найденные значения, чтобы найти уравнение касательной:

y=f(x_0)+f'(x_0)(x-x_0)y=f(x

0

)+f

(x

0

)(x−x

0

)

y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))

y=5-2(x+1)y=5−2(x+1)

y=5-2x-2y=5−2x−2

\boxed{y=-2x+3}

y=−2x+3

ответ: y=-2x+3 - искомое уравнение.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайти найбiльший спiльний дiльник двох полiномiв F(X)=9x^6 − 21x^5 + 13x^4 − 17x^3 + 10x^2 − 7x − 2 G(X)=3x^5 − 5x^4 + x^3 − 6x^2 + x − 2
Ваше имя (никнейм)*
Email*
Комментарий*