Mariya Filippov
?>

решить задания 3^32-3×9^14/26×27^10 3^10+3^9+3^8/(9^2)^2

Алгебра

Ответы

impulsmc715

ответ:-5,43476388 * 10^{26},78733

Объяснение: сильно!

БашуроваОльга369

   

План-конспект урока

Алгебра

8 класс

Тема: Доказательство неравенств

Цель:

Образовательная: формирование умений доказательства неравенств, формирование

Этапы занятия:

Организационный момент.

Актуализация опорных занятий.

Усвоение новых знаний и действий.

Первичное закрепление знаний и действий.

Контроль и самопроверка знаний, рефлексия.

Подведение итогов занятий.

ХОД ЗАНЯТИЯ

1. Организационный момент. Подготовка учащихся к работе на занятии.

2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.

а) С неравенств сравниваются большие и малые величины;

b) Во С какого приема мы умеем доказывать неравенство вида aответ:

- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);

c) Повторим данное доказательство на примере неравенства Коши.

“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 

Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.

Значит,   – верное неравенство.

3.

a) Во Попробуем сформулировать другой прием.

ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:

(a-b)2  0, (a+b)2  0 или неравенства Коши   , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;

b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.

Доказательство: Рассмотрим a+b и ab+1.

Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.

Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.

4. Докажем: 

Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.

Значит, данное неравенство  верно.

Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?

ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)

Объяснение:

как то так, неуверен

olelukoya4

1) (x+5)(x+2) > 0;

Для начала обозначим на координатной прямой нули ф-ции f(x) = (x+5)(x+2)

x + 5 = 0,    x = -5

x + 2 = 0,    x = -2

(смотри рисунок)

Точки исключенны так как строго >.

Найдем знак этой ф-ции на каждом из промежутков:

 

(-∞; -5) -  берем например -10. Подставим в наше неравенство. Имеем:

(-10 + 5)(-10 + 2) = (-5) * (-8),

Тоесть там и там отрицательное но когда умножим дасть положительное число, тоесть 40.

Значит на прмежутке (-∞; -5) знак положительной.

 

(-5; -2) - аналогично. Берем например -3.Подставим:

(-3 + 5)(-3 + 2) = 2 * (-1) = -2 - отрицательное. Значит на промежутке (-5; -2) знак отрицательной.

 

(-2; +∞). Берем например 0:

(0 + 5)(0 + 2) = 5 * 2 = 10

Значит на промежутке (-2; +∞) знак положительный.

 

Поскольку У нас неравенство > то берем промежутки с положительным знаком.

ответ: (-∞; -5) U (-2; +∞)

 

2) (x+1)(x-4) ≤ 0;

Найдем нули ф-ции:

х + 1 =0,  х = -1

х - 4 = 0,  х = 4

 

Точки включены (зарисованые)

на промежутке (-∞; -1] - положительный знак

на пр-ке [-1; 4] - отрицательный

на пр-ке [4; +∞) - положительной.

 

Поскольке ≤, то ответ: [-1; 4]

 

3) 

точку 7 - включить,  а точку -8  - исключить

Смотри рисунок.

(-∞; -8) -  "+"

(-8; 7]  -  "-"

[7; +∞)  - "+"

  ответ: (-8; 7]

 

4)

Точка -6 - включить;  точку 10 - исключить

(∞; -6] - "+"

[-6;10) - "-"

(10; +∞) - "+"

ответ: (∞; -6] U (10; +∞)

 

5) (x-1) x (x+3)> 0;

x = 1

x = 0

x = -3

Все точки исключены.

(-∞; -3) - "-"

(-3; 0) - "+"

(0; 1) - "-"

(1; +∞) - "+"

ответ: (-3; 0) U (1; +∞)

 

6) x(x+2)(x-3) > 0

x = 0

x = -2

x = 3

Все точки исключены.

(-∞; -2) - "-"

(-2; 0) - "+"

(0; 3) - "-"

(3; +∞) - "+"

ответ: (-2; 0) U (3; +∞)

 

7) 

Все точки исключены.

(-∞; -1) - "-"

(-1; 0) - "+"

(0; 0,5) - "-"

(0,5; +∞) - "+"

ответ: (-1; 0) U (0,5; +∞)

 

8) 

Точки 0 и -1/3 - включать, а точку 2 - нет.

(-∞; -1/3] - "-"

[-1/3; 0] - "+"

[0; 2) - "-"

(2; +∞) - "+"

ответ: (-∞; -1/3] U [0; 2)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить задания 3^32-3×9^14/26×27^10 3^10+3^9+3^8/(9^2)^2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alexsan-0837
oxy03214428
potapin
Ingakazakova
olelukoya4
set907
Pilotmi247074
Yelena_Irina826
Кузнецов
sergeystepanov231
samoilovcoc
Казаков
megapolisgroup
krtatiana69
tigo1