Varvara
?>

Обчісліть площа фігури, обмеженої графіками функцій і y= (x-2)2

Алгебра

Ответы

tarkhanovilya

Здравствуйте, Sonya2006f!

Чтобы восстановить неполный квадрат суммы, нужно представить крайние члены данной формулы в виде числа со степенью.

Разложение чисел на простые множители:

\rightarrow\bf 4x^2=2\cdot2\cdot x\cdot x=2^2x^2=\Big(2x\Big)^2\\\\ \rightarrow \bf 9=3\cdot 3=3^2

Теперь когда мы знаем, как представить данные члены в виде числа со степенью, запишем формулу, по которой выполнялось разложение.

Формула сокращённого умножения:

НЕПОЛНЫЙ КВАДРАТ СУММЫ:  \bf \Big(a+b\Big)^2=a^2+ab+b^2.

Зная, что первоначально выражение имело вид   \bf \Big(2x+3\Big)^2 , перемножим по формуле эти члены между собой и получим ответ на Ваш вопрос.

Разложение данного выражения на множители:

\tt \Big(2x+3\Big)^2=\Big(2x\Big)^2+\bf2x\cdot 3\tt+3^2=4x^2+\bf6x\tt+9

Окончательный ответ данной задачи:

Неполный квадрат суммы данного выражения - "6x".

С Уважением, NeNs07.

tetralek

Здравствуйте, Sonya2006f!

Чтобы восстановить неполный квадрат суммы, нужно представить крайние члены данной формулы в виде числа со степенью.

Разложение чисел на простые множители:

\rightarrow\bf 4x^2=2\cdot2\cdot x\cdot x=2^2x^2=\Big(2x\Big)^2\\\\ \rightarrow \bf 9=3\cdot 3=3^2

Теперь когда мы знаем, как представить данные члены в виде числа со степенью, запишем формулу, по которой выполнялось разложение.

Формула сокращённого умножения:

НЕПОЛНЫЙ КВАДРАТ СУММЫ:  \bf \Big(a+b\Big)^2=a^2+ab+b^2.

Зная, что первоначально выражение имело вид   \bf \Big(2x+3\Big)^2 , перемножим по формуле эти члены между собой и получим ответ на Ваш вопрос.

Разложение данного выражения на множители:

\tt \Big(2x+3\Big)^2=\Big(2x\Big)^2+\bf2x\cdot 3\tt+3^2=4x^2+\bf6x\tt+9

Окончательный ответ данной задачи:

Неполный квадрат суммы данного выражения - "6x".

С Уважением, NeNs07.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Обчісліть площа фігури, обмеженої графіками функцій і y= (x-2)2
Ваше имя (никнейм)*
Email*
Комментарий*