Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Объяснение:
Решить систему уравнений
(x-5y)(x²-36)=0
x-y=4
Выразим х через у во втором уравнении:
х=4+у
Первые скобки приравняем к нулю, как один из множителей, дающих в результате ноль:
x-5y=0
Подставим выраженное х через у:
4+у-5у=0
4-4у=0
-4у= -4
у= -4/-4
у₁=1
Теперь подставляем значение у в уравнение первых скобок и вычисляем х:
x-5y=0
х=5у
х=5*1
х₁=5
Теперь приравняем к нулю вторые скобки, как один из множителей, дающих в результате ноль:
x²-36=0
x²=36
х₂,₃=±√36
х₂= -6
х₃=6
x-y=4
-у=4-х
у=х-4
у₂=х₂-4
у₂= -6-4
у₂= -10
у₃=х₃-4
у₃=6-4
у₃=2
Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть кількість різних 3-цифрових чисел с объяснением
Пусть большее число равно х, тогда меньшее по условию равно х - 20. Их произведение равно y = x(x - 20) = x^2 - 20x. Для нахождения наименьшего возможного у берем производную от у и приравниваем нулю: y' = 2x - 20 = 0. Отсюда х = 10. Нетрудно проверить, что в этой точке у имеет минимум. Второе из чисел равно 10 - 20 = -10.
x и y
y=1-x
z=x(1-x)
Находим критическую точку:
z'=1-x-x=1-2x
z'=0-> x=0,5
Проверяем какой экстремум:
x<0,5->z'>0-возрастает
x>0,5->z'<0-убывает, следовательно это максимум
ответ:x= 0,5 и y= 0,5->xy=0,25