Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым: abcd=1000a+100b+10c+d dcba=1000d+100c+10b+a
По условию: abcd-dcba=909 1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909 999(a-d)+90(b-c)=909 111(a-d)-10(c-b)=101 Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит: 111-10(c-b)=101 10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8 c=b+1, из чего видно, что b≤8 Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=18d+b=8
Например 9081, 2781 и т.д.
yok887062
09.11.2022
1) функция четная
2) x=0, y=-4 (это точки пересечение графика с осью ОУ) y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти) f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная) y'=0 2*x=0 x=0- точка экстремума. f '(x)>0 при xЭ (0; плюс бесконечности) f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности) Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума f(Xmin)=-4 7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4) тоесть, у тя сначало функция убывает до этой точки, затем возрастает. А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Выберите правильные утверждения для графика линейного уравнения х-у=4 * Варианты ответов: График уравнения возрастает График уравнения убывает Зарание
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2:
222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант:
2(d+b)+2=18d+b=8
Например 9081, 2781 и т.д.