cmenick29
?>

Найдите, в какой точке графика функции y=√(2x-1) касательная наклонена к оси абсцисс под углом ∝=45°

Алгебра

Ответы

merung
Покажем, чтоЧастное и остаток от деления могут быть найдены в ходе выполнения следующих шагов:1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой .2. Умножаем делитель на полученный выше результат деления (на первый элемент частного). Записываем результат под первыми двумя элементами делимого .3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой .4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.5. Повторяем шаг 4.
filantropagv4
Обычная кубическая парабола
1) Область определения - (-оо; +оо)
2) Ни четная, ни нечетная, не периодическая.
3) y(0) = -1; y = 0 в трех иррациональных точках
x1 ~ -1,755; x2 ~ -0,085; x3 ~ 3,34
4) Асимптот нет
5) y ' = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1) = 0
x1 = -1; y(-1) = -2 - 3 + 12 - 1 = 6 - максимум
x2 = 2; y(2) = 2*8 - 3*4 - 12*2 - 1 = 16 - 12 - 24 - 1 = -21 - минимум
При x = (-oo; -1) U (2; +oo) - возрастает
При x = (-1; 2) - убывает
6) y '' = 12x - 6 = 6(2x - 1) = 0
x = 1/2; y(1/2) = 2/8 - 3/4 - 12/2 - 1 = -1/2 - 6 - 1 = - 7,5 - точка перегиба
При x < 1/2 будет y '' < 0; график выпуклый вверх.
При x > 1/2 будет y '' > 0, график выпуклый вниз.
7) График

С. исследуйте функцию и постройте график 1)найти область определения функции . 2)выяснить,не являетс

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите, в какой точке графика функции y=√(2x-1) касательная наклонена к оси абсцисс под углом ∝=45°
Ваше имя (никнейм)*
Email*
Комментарий*