vickuznetsova8677
?>

РЕШИТЬ ЗАДАЧИ, ЖЕЛАТЕЛЬНО С ОБЪЯСНЕНИЯМИ

Алгебра

Ответы

vladislavk-market2

1. Сума квадратів двох сторін прямокутника ABCD дорівнює 120 сантиметрів. Знайдіть добуток цих сторін.

2. Петро задумав деяке число, що дорівнює поданому виразу:

\frac{3}{x - 3} + \frac{3}{x}

Яке число задумав Петро?

Anatolevich
4x^3-24x^2-4x+120=4(x+2)(x-3)(x+a)
4(x^3-6x^2-x+30)=4(x+2)(x-3)(x+a)
(x^3-6x^2-x+30)=(x+2)(x-3)(x+a)
раскроем первые две скобки справа от знака равенства
(x+2)(x-3)=x^2-3x+2x-6=x^2-x-6
(x^3-6x^2-x+30)=(x^2-x-6)(x+a)
так как имеем равенство, то левая часть равенства имеют такие же два множителя-скобки
выделим слева такое же выражение, как и в первой скобке справа
(x^3-x^2-5x^2-6x+5x+30)=(x^2-x-6)(x+a)
здесь в левой части равенства -6x^2 расписали как -x^2-5x^2, а слагаемое -x как -6x+5x
((x^3-x^2-6x)-5x^2+5x+30)=(x^2-x-6)(x+a)
(x(x^2-x-6)-5(x^2-x-6))=(x^2-x-6)(x+a)
в левой части равенства как общий множитель выносим за скобку
(x^2-x-6)(x-5)=(x^2-x-6)(x+a) 
выражения в первых скобках слева и справа равны, следовательно равны и выражения во второй скобке слева и справа
x-5=x+a
a=-5
tochkamail7
ΔАВС, М является АВ, СМ = MB. МК - луч, МК - биссектриса ∟AMC. Довести МК ‖ СВ. Доведения ". По условию МК - биссектриса ∟AMC. По определению биссектрисы треугольника имеем: ∟AMK = ∟KMC = 1 / 2∟AMC. Пусть ∟AMK = ∟KMC = х, тогда ∟AMC = 2х. ∟AMC i ∟CMB - смежные. По теореме о смежных углы имеем: ∟CMB = 180 ° - 2х. По условию СМ = MB. Итак, ΔСМВ - равнобедренный. По свойству углов равнобедренного треугольника имеем: ∟MCB = ∟MBC = (180 ° - (180 ° - 2х)): 2 = = (180 ° - 180 ° + 2х) 2  = (2х): 2 = х. Итак, ∟AMK = ∟MBC - х. ∟AMK i ∟MBC - соответствующие. Поэтому по признаку параллельности прямых имеем МК ‖ ВС, АВ - сек.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

РЕШИТЬ ЗАДАЧИ, ЖЕЛАТЕЛЬНО С ОБЪЯСНЕНИЯМИ
Ваше имя (никнейм)*
Email*
Комментарий*