Всего 60 трехзначных чисел
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
Всем доброго времени суток с алгеброй, тема функция y=k/x. Заранее
5 см, 12 см и 13 см.
Объяснение:
Пусть а - меньший катет, b - больший катет, c - гипотенуза.
Составим систему уравнений:
а = с - 8 (1)
b - a = 7 (2)
Сложим почленно уравнения (1) и (2):
a + b - a = c - 8 + 7
b = c - 1 (3)
Согласно теореме Пифагора:
а² + b² = c² (4)
Подставим в (4) вместо а и b их значения из (1) и (3):
(с - 8)² + (с-1)² = с²
с² - 16с +64 +с² - 2с + 1 = с²
с² - 18с + 65 = 0
с₁,₂ = 9±√(9²-65) = 9±√16 = 9±4
с₁ = 9+4 = 13 см
с₂ = 9-4 = 5 см - не подходит, т.к. в таком случае катет будет величиной отрицательной.
Таким образом, гипотенуза с = 13 см.
Из (1) находим меньший катет а:
а = с - 8 = 13 - 8 = 5 см
Из (3) находим больший катет b:
b = с - 1 = 13 - 1 = 12 см
ПРОВЕРКА
5²+12² = 25+144=169
13² = 169
Сумма квадратов катетов равна квадрату гипотенузы - значит, задача решена верно.
ответ: стороны данного прямоугольного треугольника равны 5 см, 12 см и 13 см.