№1. Одна сторона прямоугольника на 2 см меньше стороны квадрата, а вторая сторона больше, чем сторона квадрата, на 4 см. Найдите сторону квадрата, если площадь прямоугольника равна 40 см².
Решение
сторона квадрата = хсм. Тогда стороны прямоугольника будут
х -2 и х +4
(х-2)(х+4) = 40
х² +2х -8 = 40
х² +2х -48 = 0
По т. Виета корни 6 и -8(не подходит по условию задачи)
ответ : сторона квадрата = 6см
№2. Найдите катеты прямоугольного треугольника, если известно, что один из них на 4 см меньше другого, а гипотенуза равна 20 см.
Один катет = х, другой = х - 4
По т. Пифагора х² + (х -4)² = 400
х² + х² -8х +16 = 400
2х² -8х -384 = 0
х² -4х -192 = 0
х = 2 +-√(4 +192) = 2 +-14
х₁ = 16 и х₂ = -12(не подходит по условию задачи)
ответ: катеты 16см и 12 см
Поделитесь своими знаниями, ответьте на вопрос:
Даны наблюденные значения СВ. Требуется: 1. Построить сгруппированный статистический ряд. 34 25 29 34 12 28 13 28 28 17 28 36 27 17 27 26 23 31 32 23 17 22 34 22 25 28 37 28 31 25 23 33 24 24 25 28 26 19 29 21 30 18 26 19 29 24 25 26 30 30 21 30 19 20 30 34 20 36 35 31 22 30 22
Решите уравнение √(16 - x ) +√(x-14) =x²-30x +227 ответ: x=15 .
обозначаем f(x) = √(16 - x ) +√(x-14)
D(f) : { 16 -x ≥0 ; x -14 ≤0 .⇔x∈[14;16] * * * ООФ * * *
Очевидно f(x) > 0, т.к. 16 - x и x -14 нулевое значение принимают при разных значениях переменного x . * * * система 16 - x =0=x -14 не имеет решения * * *
f '(x) =( √(16 - x ) +√(x-14) ) ' = -1/2√(16 - x) +1/2√(x-14) =
1/2( √(16-x) - √(x -14) ) /2√(16 - x) *√(x-14)
f '(x) =0 ⇒√(16-x) - √(x-14)=0 ⇒x=15.
f ' (x) + -
14 15 16
f(x) ↑ max ↓
maxf(x) = f(15) =2 . (1)
x∈[14;16]
g(x) =x²-30x +227 =(x-15)² +2 ≥2
min g(x) = g(15) =2 . (2)
Из (1) и (2) следует x=15 .
Можно и без применения производной :
f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 ,
равенство имеет место ,если 16 - x =x-14, т.е. при x=15.
Затем из f²(x) ≤ 4 ⇒ f(x) ≤ 2 . || f(x) >0 ||
2-ой Это не мое решение
( более искусственный, использован частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * *
ОДЗ :x∈[14;16]
Оценим обе части равенства
√(16-x ) =√(16-x )*1 ≤ (17-x)/2 (3) ; равенство, если 16 -x=1 ⇒x=15.
√(x-14)= √(x-14)*1 ≤ (x-13)/2 (4) ; равенство, если x-14=1 ⇒x=15.
Из (3) и (4) получаем √(16-x)+√(x-14) ≤ 2 * * * (17-x)/2 +(x-14)/2 =2 * * *
правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2
равенство опять , если x=15.
2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2
равенство имеет место только при x=15.