Пусть первая машинистка может выполнить работу за Х дней, тогда по условию вторая может выполнить эту же работу за Х +15 дней
Учитывая, что производительность совместной работы равна сумме производительностей каждого участника работы, составим таблицу: ______________________________________________________ Работа Производительность Время ______________________________________________________ I маш. 1 1/ Х Х ______________________________________________________ II маш. 1 1/ (Х+15) Х + 15 ______________________________________________________ I +II маш. 1 1/ Х + 1/ (Х+15) 10 ______________________________________________________
Из последней строки следует уравнение:
По теореме Виета: х1+х2 = 5, х1*х2 = -150 => х1 = 15, х2= - 10 Второй корень не подходит, т.к. время не может быть отрицательным.
Значит Х = 15 (время первой машинистки - 15 дней). Тогда вторая машинистка выполнит эту же работу за Х+15 = 15+15 = 30 дней..
ответ: 15 и 30 дней.
Pilotmi247074
12.10.2020
Пусть первая машинистка может выполнить работу за Х дней, тогда по условию вторая может выполнить эту же работу за Х +15 дней
Учитывая, что производительность совместной работы равна сумме производительностей каждого участника работы, составим таблицу: ______________________________________________________ Работа Производительность Время ______________________________________________________ I маш. 1 1/ Х Х ______________________________________________________ II маш. 1 1/ (Х+15) Х + 15 ______________________________________________________ I +II маш. 1 1/ Х + 1/ (Х+15) 10 ______________________________________________________
Из последней строки следует уравнение:
По теореме Виета: х1+х2 = 5, х1*х2 = -150 => х1 = 15, х2= - 10 Второй корень не подходит, т.к. время не может быть отрицательным.
Значит Х = 15 (время первой машинистки - 15 дней). Тогда вторая машинистка выполнит эту же работу за Х+15 = 15+15 = 30 дней..
1) Г
2) Б
3) Г
Объяснение: