Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).
Panda062000
10.07.2022
Банка с медом 500 г;банка с керос. 350 г;керос ? г, но в 2 раза легче меда;банка ? гРешение:А р и ф м е т и ч е с к и й с п о с о б.Если масса меда в банке вдвое больше массы керосина, то можно считать, что в этой банке находится масса меда, равная двойной масса керосина.500 - 350 = 150 (г) (одна) масса керосина в банке.350 - 150 = 200 (г) масса пустой банкиответ: А) 200 г - масса пустой банки.Проверка: 150*2+200 = 500; 500 = 500А л г е б р а и ч е с к и й с п о с о б.Х г масса пустой банки;(350 - Х) г масса керосина;2 * (350 - Х ) г масса меда;(Х + 2 * (350 - Х)) г масса банки с медом;500 = Х + 2 * (350 - Х) по условию;500 = Х + 700 - 2ХХ = 200 (г)ответ: 200 г масса пустой банки. Подробнее - на -
f(x) = ( x - 5 ) / ( x² + x - 6 )
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).