1) f'(x)=(2sinx+3)' (4-5cosx) + (2sinx+3)(4-5cosx)' = 2cosx(4-5cosx) + 5sinx(2sinx + 3) = 8cosx-10cos²x+10sin²x+15snx = 15sinx + 8cosx - 10cos 2x
2) Находим производную и приравниваем ее к нулю.
y' = -3x²-6x+24
-3х²-6х+24=0 /(-3)
x²+2x-8=0
x₁=-4 --4+
x₂=2 - не принадлежит данному промежутку
ответ. -4 - точка минимума.
3) Находим координаты точки пересечения с осью ординат.
х = 0
у(0)=2 (0;2)
Находим производную.
y' = -2x-½
y'(0) = -½
Cоставляем уравнение касательной.
y=2-(x/2)
Поделитесь своими знаниями, ответьте на вопрос:
Менша основа рівнобічної трапеції дорівнює 4 см, а бічна сторона - 6 см. знайдіть діагональ трапеції, якщо її тупий кут дорівнює 120 градусів.
(x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ;
ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4.
---
x²+(3b+2)x+2b² +3b+1=0 ;
D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения :
x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 ,
т.е. если b ≠ -1 и b ≠ -2,5.
x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , .
т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S.
Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔
b² +3b+2 =0 ⇒[ b = -2 ; b = -1 .
2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
b ≠ -5 ; -2,5 ; -2 ; - 1.