antoska391
?>

Клумба имеет форму правильного треугольника со стороной 3 метра. На клумбе выложен цветочный круг диаметром 1 метр. Какова вероятность того, что случайно отмеченная точка треугольника окажется в кругеСхематически изобразите данную клумбу)

Алгебра

Ответы

modellisimo-a

1,5 вероятность того что случай отмецанной точки треугольника окажется в кругу

Nastyaches4
2) Сумма геометрической прогрессии вычисляется (b₁*(1-qⁿ)/(1-q)), где q - знаменатель геометрической прогрессии, n - номер элемента.
Тогда: (3 * (1 - 2⁵)/(1 - 2)) = (3 * 31)/1 = 93.

3) а) Заметим, что 34 - это 68/2, т.е. n в знаменателе = 2, что удовлетворяет условиям.
б) Поделим 68 на -4. Получим -17. 17 должно быть в знаменателе, т.е. n=17. (-1) в нечётной степени равна -1. Удовлетворяет.
в) Аналогично, n = 5, степень нечётная, следовательно, результат отрицательный. Удовлетворяет.
г) Этот пункт не удовлетворяет, поскольку n = 7, а дробь положительная (должна быть отрицательной из-за нечётности 7).
Olybetezina1973
Далее все вычисления будем делать в одних и тех же единицах измерения, и привязанных к ним единицах пощади, т.е. в метрах и квадратных метрах.

Если обозначить длину и ширину, как: a и b , то для площади и периметра получатся выражения:

S = ab = 210 ;

P = 2(a+b) = 62 ;

a + b = 62 : 2 ;

a + b = 31 ;

b = 31 - a ;

Подставим это выражение для b в формулу для площади:

ab = a(31-a) = 210 ;

31a - a^2 = 210 ;

a^2 - 31a + 210 = 0 ;

Можно решить по формулам квадратного уравнения,
а если не знаете их, то так:

4a^2 - 4 \cdot 31a + 4 \cdot 210 = 0 ;

(2a)^2 - 2 \cdot 2a \cdot 31 + 31^2 - ( 31^2 - 4 \cdot 210 ) = 0 ;

( 2a - 31 )^2 = 961 - 840 ;

( 2a - 31 )^2 = 121 ;

( 2a - 31 )^2 = 11^2 ;

2a - 31 = \pm 11 ;

2a = 31 \pm 11 ;

a = \frac{ 31 \pm 11 }{2} ;

a_1 = \frac{ 31 - 11 }{2} = \frac{20}{2} = 10 м ;

a_2 = \frac{ 31 + 11 }{2} = \frac{42}{2} = 21 м ;

Подставим это выражение для a в формулу для b :

b_1 = 31 - a_1 = 31 - 10 = 21 м ;

b_2 = 31 - a_2 = 31 - 21 = 10 м ;

О т в е т :
возможные стороны прямоугольника – 10 метров и 21 метр.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Клумба имеет форму правильного треугольника со стороной 3 метра. На клумбе выложен цветочный круг диаметром 1 метр. Какова вероятность того, что случайно отмеченная точка треугольника окажется в кругеСхематически изобразите данную клумбу)
Ваше имя (никнейм)*
Email*
Комментарий*