ответ: 14/9.
Объяснение:
Из равенства 1≤x≤e следует неравенство 0≤ln(x)≤1, а из него - неравенство 0 ≤y≤1/. Поэтому пределами интегрирования по х являются 1 и е, а по у - 0 и 1.
1. Вычисляем интеграл по переменной х. Так как выражение √(4-3*y) от х не зависит, то оно выносится за знак интеграла, и тогда имеем просто интеграл ∫dx/x=ln(x). Подставляя пределы интегрирования по переменной х, находим ln(e)-ln(1)=1-0=1.
2. Вычисляем интеграл по переменной y: 1*∫√(4-3*y)*dy=-1/3*∫√(4-3*y)*d(4-3*y)=-2/9*√(4-3*y)³. Подставляя пределы интегрирования по переменной у, находим -2/9*√1+2/9*√64=-2/9+16/9=14/9. ответ: 14/9.
Поделитесь своими знаниями, ответьте на вопрос:
Г) Составь цепь питания и вычисли массу водорослей, необходимую для питания выдры весом 25 кг, которая питается рыбой выдра, рыба, водоросли, 250 кг рыба, водоросли, выдра, 2500 кг водоросли, рыба, выдра, 2500кг водоросли, рыба, выдра, 25 000 кг
ответ: 14/9.
Объяснение:
Из равенства 1≤x≤e следует неравенство 0≤ln(x)≤1, а из него - неравенство 0 ≤y≤1/. Поэтому пределами интегрирования по х являются 1 и е, а по у - 0 и 1.
1. Вычисляем интеграл по переменной х. Так как выражение √(4-3*y) от х не зависит, то оно выносится за знак интеграла, и тогда имеем просто интеграл ∫dx/x=ln(x). Подставляя пределы интегрирования по переменной х, находим ln(e)-ln(1)=1-0=1.
2. Вычисляем интеграл по переменной y: 1*∫√(4-3*y)*dy=-1/3*∫√(4-3*y)*d(4-3*y)=-2/9*√(4-3*y)³. Подставляя пределы интегрирования по переменной у, находим -2/9*√1+2/9*√64=-2/9+16/9=14/9. ответ: 14/9.