x_2=(-√324-14)/(2*1)=(-18-14)/2=-32/2=-16 - не принимаем по ОДЗ.
По значению абсциссы х = 2 находим ординату:
y=log2(2) = 1.
Apresov
03.01.2020
1 cлучай: a и b одинаковых знаков ab>=0 Воспользуемся неравенством: о средних (x+y)/2>=√xy |ab|=ab<=(a^2+b^2)/2=1/2 2ab<=1 Преобразуем: (a+b)^2-2ab=1 (a+b)^2=1+2ab<=2 Откуда |a+b|<√2 -√2<=a+b<=√2 ЧТД 2 cлучай: a и b разных знаков. Тут уже поинтересней: имеем: a^2=1-b^2<=1 тк b^2>0 |a|<=1 Анологично |b|<=1 тк одно положительное другое отрицательное,то можно сделать оценку: 0 <=a<=1 -1<=b<=0 Сложим эти сравнения: -1<=a+b<=1 А значит и верно что -√2<a+b<√2 что удовлетворяет рамкам неравенства. тк √2>1 чтд Заметим что равенство выполняется когда a=b=+-1/2
Надо приравнять log2(х) = 5 - log2(x+14).
log2(х) + log2(x+14) = 5.
Сумма логарифмов равна логарифму произведения, а цифру 5 представим так: 5 = log2(32).
log2(х*(x+14)) = log2(32).
При равных основаниях логарифмирумые выражения равны.
х*(x+14) = 32. Раскроем скобки:
х² + 14х - 32 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=14^2-4*1*(-32)=196-4*(-32)=196-(-4*32)=196-(-128)=196+128=324;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√324-14)/(2*1)=(18-14)/2=4/2=2;
x_2=(-√324-14)/(2*1)=(-18-14)/2=-32/2=-16 - не принимаем по ОДЗ.
По значению абсциссы х = 2 находим ординату:
y=log2(2) = 1.