Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов:
Поделитесь своими знаниями, ответьте на вопрос:
Докажите тождество: (a/a^2-25 - a-8/a^2-10a+25)
Для облегчения понимания можно уравнение поделить на
корни которых очевидно действительны и различны. Мы сделали самое сложное - доказали, что все корни нашего уравнения действительны (и, кстати, различны - это я говорю на тот случай, если кто-то не привык кратные корни подсчитывать, учитывая их кратность). Теперь, не вычисляя эти гадкие корни, воспользуемся теоремой Виета для многочлена 4-й степени, которая утверждает, что корни этого многочлена удовлетворяют следующим условиям (я буду их выписывать в упрощенном виде, используя то, что у нас старший коэффициент равен 1):
для многочлена
Нам потребуются первые два равенства; остальные я написал для коллекции. Имеем:
В нашем случае b=100; c=93, поэтому
ответ: 9814