Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Feyruz90
23.03.2020
1) a5 = 2*5 - 5² = 10 - 25 = -15 (ответ 1) ) 2) а6 = 2 + (6 - 1)*(-3) = 2 - 15 = -13 (ответ 3) ) 3) d = a6 - a2 / 4 = 14-4 /2 = 2,5 (ответ 1) ) 4) s10 = ( 2*2 + 9*4) / 2 * 10 = 200 (ответ 4) ) повыш.уровень. 1) прогрессия убывающая, с разностью d= - 0,2 первый член равен 3, посчитаем, каким по счету будет член, равный нулю. обозначим его аn, аn=0. 3 : 0,2 = 15, тогда по формуле аn = а1 + (n - 1)*d найдем n: 0 = 3 + 15*(- 0,2) 0 = 3 + (16 - 1)*(- 0,2) значит а16 равен нулю, значит в последовательности 15 положительных членов. 2) а3 = 10 => 10 = a1 + 2d а7 = 10 => 40 = a1 + 6d получили систему. из второго вычтем первое уравнение, получим: 30 = 4d => d = 7,5 a1 = 10 - 2d = 10 - 15 = -5 тогда а5= a1 + 4d = -5 + 4*7,5 = 25 3) если рассматривать множество натуральных чисел как арифм.прогрессию с первым членом a1 = 1 и разностью d = 1, то сводится к нахождению разности s100 - s39, s100 = (1+100) /2 * 100 = 5050 s39 = (1+39) /2 * 39 = 780 s100 - s39 = 5050 - 780 = 4270 4) d = а8 - а4 / 4 = 20 - 8 /4 = 12/4 = 3 тогда по формуле аn = а1 + (n - 1)*d найдем чему равен первый член: а4 = а1 + (4 - 1)*d 8 = а1 + 3*3 а1 = -1 тогда 16-й член будет равен: а16 = а1 + (16 - 1)*d = -1 + 15*3 = 44 т.о. действительно такая ар.прогрессия существует и формула общего члена такая: аn = -1 + 3(n - 1) = -1 + 3n - 3 = 3n - 4 аn = 3n - 4 5) аn = 3n - 1 а1 = 3 - 1 = 2 а2 = 6 - 1 = 5 d = а2 - а1 = 5-2 = 3 s = s54 - s13 = 4401 - 260 = 4141 s54 = (2*2 + 53*3) /2 * 54 = (4 + 159) /2 * 54 = 163 * 54 /2 = 4401 s13 = (2*2 + 12*3) /2 * 13 = (4 + 36) /2 * 13 = 20 * 13 = 260 ответ: сумма членов прогрессии с 14 по 54 включительно равна 4141.
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7