|5x-13|-|6-5x|=7 Используя то,что |a-b|=|b-a| получим: |5x-13|-|5x-6|=7 Найдем корни(нули) подмодульных выражений: 5x-13=0 =>x=2,6 5x-6=0 => x=1,2 Отметим эти точки на оси: 1,22,6
Эти числа разбивают ось на три промежутка.Рассмотрим все 3 случая: 1)x<=1,2 Оба подмодульных выражения отрицательны на этом промежутке, поэтому раскроем модули со сменой знака: -5x+13+5x-6=7 7=7 Это означает, что весь числовой промежуток является решением уравнения. 2)1,2<x<=2,6 Первый модуль мы раскроем со сменой знака, второй - без смены знака: -5x+13-5x+6=7 -10x+19=7 -10x=-12 x=1,2 - корень не входит в рассматриваемый промежуток,но он входит в предыдущий промежуток. 3)x>=2,6 Оба модуля раскроем без смены знака: 5x-13-5x+6=7 -7=7 На этом промежутке у нас пустое множество. Вывод: решением уравнения является промежуток x<=1,2. Наибольшее целое решение из этого промежутка = 1. ответ:1
tvtanya80
22.03.2023
Надеюсь будет понятно. При решение квадратных уравнений, надо запомнить где какой коэффициент. Я прикрепила фото того, как нам объясняли. Ещё если дискриминант больше 0, то два корня, если дискриминант меньше 0, то корней нет, а если дискриминант равен 0, то один корень. Если коэффициент а-отрицательное число, то лучше разделить всё уравнение на -1 (просто как по мне так проще не запутаться в знаках, я так делила во втором уравнении). Ну а если хочешь решить через теорему Виетта, то а-обязательно должно быть равно 1 (я сейчас прикреплю, но Виетта не всегда решить, например в 4 уравнении не получиться)
Используя то,что |a-b|=|b-a| получим:
|5x-13|-|5x-6|=7
Найдем корни(нули) подмодульных выражений:
5x-13=0 =>x=2,6
5x-6=0 => x=1,2
Отметим эти точки на оси:
1,22,6
Эти числа разбивают ось на три промежутка.Рассмотрим все 3 случая:
1)x<=1,2
Оба подмодульных выражения отрицательны на этом промежутке, поэтому раскроем модули со сменой знака:
-5x+13+5x-6=7
7=7
Это означает, что весь числовой промежуток является решением уравнения.
2)1,2<x<=2,6
Первый модуль мы раскроем со сменой знака, второй - без смены знака:
-5x+13-5x+6=7
-10x+19=7
-10x=-12
x=1,2 - корень не входит в рассматриваемый промежуток,но он входит в предыдущий промежуток.
3)x>=2,6
Оба модуля раскроем без смены знака:
5x-13-5x+6=7
-7=7
На этом промежутке у нас пустое множество.
Вывод: решением уравнения является промежуток x<=1,2. Наибольшее целое решение из этого промежутка = 1.
ответ:1