f(x) = x³ - 3x [0 , 2]
Найдём производную :
f'(x) = (x³)' - 3(x)' = 3x² - 3
Найдём нули производной :
3x² - 3 = 0
3(x² - 1) = 0
x² - 1 = 0
x₁ = - 1 x₂ = 1
Только x = 1 ∈ [0 ; 2]
Определим знаки производной на отрезке [0 , 2] :
- +
[0][1][2]
min
В точке x = 1 функция имеет минимум, который является наименьшим значением на заданном отрезке. Найдём это наименьшее значение :
f(1) = 1³ - 3 * 1 = 1 - 3 = - 2
Найдём значения функции на концах отрезка :
f(0) = 0³ - 3 * 0 = 0
f(2) = 2³ - 3 * 2 = 8 - 6 = 2
ответ : наименьшее значение равно - 2 , а наибольшее равно 2 .
Объяснение:
а) 9x-3y=6;
Выражаем у через х и получаем линейную функцию:
3у=9х-6;
у=(9х-6)/3=3х-2;
у=3х-2.
Графиком линейной функции является прямая, прямую можно построить по двум точкам, например:
х у
0 -2
2 4
См. рисунок а).
б) y=-4x+2;
График линейной функции - прямая, строим ее по двум точкам, например:
х у
0 2
1 -2
См. рисунок б).
в) y=⅓x;
График прямой пропорциональности - это прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
3 1
См. рисунок в).
г) y=-x;
График прямой пропорциональности - прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
2 -2
См. рисунок г).
д) y=-5;
Графиком является прямая, которая проходит через точку (0;-5) и параллельно оси абсцисс (ОХ).
См. рисунок д).
e) x=4;
Графиком является прямая, которая проходит через точку (4;0) и параллельно оси ординат (ОY).
Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
Хелпаните до завтра нужно сдать
ответ
Короче, тебе нужно скачать приложение photomath вводишь пример, и это приложение поэтапно решает тебе примеры)