1) скорость течения реки Vр = 2.4 км/ч.
2) 65 вопросов.
Объяснение:
1. v1 = v2; t=2 часа.
Путь S=vt.
По течению S1=2(v1+vp);
Против течения S=2(v2-vp).
v1=v2=v. S1-S2=9.6 км.
2(v+vp)-2(v-vp)=9.6;
2v+2vp-2v+2vp=9.6;
4vp=9.6 ;
vp=9.6:4;
vp= 2.4 км/ч.
***
2. Петя - за 60 мин - 13 вопросов;
Ваня за 60 мин - 15 вопросов
Скорость ответов Пети равна 13/60;
Скорость ответов Вани равна 15/60.
Обозначим количество вопросов теста через х.
Тогда Петя затратил на ответы х/(13/60) минут;
а Ваня затратил - х/(15/60) минут;
Разность во времени ответов равна 40 минут.
х/(13/60)-х/(15/60)=40;
60x/13-60х/15=40; (Наименьший общий знаменатель равен 13*15=195 ).
Дополнительные множители 15, 13 и 195;
900х - 780х =7800;
120х=7800;
х=7800/120;
х=65.
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Поделитесь своими знаниями, ответьте на вопрос:
решить 7 задание решить 7 задание ">
обозначь (x^2+5x)=a
получим a^2-2a-24=0
D= 4+96=100
x1=(2+10)/2=6
x2=(2-10)/2= -4
решаем x^2+5x=6
x^^2+5x-6=0
и второе x^2+5x= -4
x^2+5x+4=0
ищем дискриминанта, смотрим есть ли в них корни.