Y = (1/3)*(x^3) -(x^2) Находим первую производную: f'(x) = x2-2x или f'(x) = x(x-2) Находим нули функции. Для этого приравниваем производную к нулю x(x-2) = 0 Откуда: x1 = 0 x2 = 2 На промежутке (-∞ ;0) f'(x) > 0 - функция возрастает; На промежутке (0; 2) f'(x) < 0 функция убывает; На промежутке (2; +∞) f'(x) > 0 функция возрастает. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 2 - точка минимума.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
балов пятое и шестое задание балов пятое и шестое задание
x² + 8x + 16 = 4x² + 5
x² - 4x² + 8x + 16 - 5 = 0
- 3x² + 8x + 11 = 0
3x² - 8x - 11 = 0
D = b² - 4ac = 64 - 4 × 3 × (-11) = 64 + 132 = 196 = 14²
x1 = ( 8 + 14) / 6 = 22/6 = 11/3 = 3 целых 2/3
x2= ( 8 - 14) / 6 = - 1
ответ: x1 = 3целых 2/3, x2 =- 1.
2) 36x² - 9x = 3x - 1
36x² - 9x - 3x + 1 = 0
36x² - 12x + 1 = 0
D = b² - 4ac = 144 - 4 × 36 × 1 = 144 - 144 = 0 - имеет один корень.
x = - b/2a
x = 12 / 72 = 1/6
ответ: x = 1/6.
3) 0,1x² - 14 = - 0,4x
0,1x² + 0,4x - 14 = 0 (сокращаем на 0,1):
x² + 4x - 140 = 0
D = b² - 4ac = 16 - 4 × (-140) = 16 + 560 = 576 = 24²
x1 = ( - 4 + 24) / 2 = 10
x2 = ( - 4 - 24) / 2 = - 14
ответ: x1 = 10, x2 = - 14.