Рассмотрим функцию у = -х² + 6х - 4. Это квадратичная пирамида, ветви вниз. Наивысшей точкой пирамиды (наибольшим значением у) будет значение координаты у вершины пирамиды.
Найдем координаты вершины пирамиды.
х0 = (-b/2a) = -6/(-2) = 3.
у0 = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Найдем производную функции:
у = -х² + 6х - 4.
у' = -2х + 6.
Найдем нули производной: у' = 0,
-2х + 6 = 0;
-2х = -6;
х = 3.
Определим знаки производной на каждом участке:
(-∞; 3) пусть х = 0; у'(0) = -2 * 0 + 6 = 6 (плюс, функция возрастает).
(3; +∞) пусть х = 4; у'(4) = -2 * 4 + 6 = -2 (минус, функция убывает).
Следовательно, х = 3 - это точка максимума функции.
Найдем максимальное значение функции в точке х = 3.
у(3) = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенство (x+4)^2/x^2-9 <=0
Впишем между его цифрами ноль, получим трёхзначное число 100a+b
По условию, оно в 9 раз больше исходного числа, т.е.
100a+b=9(10a+b)
100a+b=90a+9b
100a-90a=9b-b
10a=8b
a=8b:10
a=0,8b
при b=1 a=0,8*1=0,8 - не цифра
при b=2 a=0,8*2=1,6 - не цифра
при b=3 a=0,8*3=2,4 - не цифра
при b=4 a=0,8*4=3,2 - не цифра
при b=5 a=0,8*5=4 - цифра 45 - искомое число (45*9=405)
при b=6 a=0,8*6=4,8- не цифра
при b=7 a=0,8*7=5,6 -не цифра
при b=8 a=0,8*8=6,4 -не цифра
при b=9 a=0,8*9=7,2 -не цифра
*** Для понимания хода решения и рассуждений показаны все варианты перебора
Итак, существует только одно двузначное число, обладающее указанными свойствами. Оно равно 45
ответ: 45