katrin819
?>

Сколько корней имеет уравнение cos x= п/4?

Алгебра

Ответы

kukoleva

Для решения неравенства методом интервалов будем выполнять следующие шаги

1) найдем корни уравнения уравнения

(x+3)(x-4)(x-6)=0

произведение равно нуля когда любой из множителей равен нулю

х+3=0 или х-4=0 или х-6=0

тогда х= -3 или х= 4 или х=6

2) Нарисуем числовую ось и отметив полученные точки

-3 4 6

3) в каждом из полученных промежутков определим знак нашего выражения

при х< -3 проверим для точки х= -5

(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0

при -3<x<4 проверим для точки х=0

(0+3)(0-4)(0-6)=(+)(-)(-)>0

при 4<x<6 проверим для точки х=5

(5+3)(5-4)(5-6)=(+)(+)(-)<0

при x>6 проверим для точки х=10

(10+3)(10-4)(10-6)= (+)(+)(+)>0

4) расставим полученные знаки над промежутками

--3+4-6__+

5) и теперь осталось выбрать промежутки  где стоит знак "минус"

( по условию <0)

Запишем полученные промежутки (-∞; -3) ∪(4;6)

kokukhin
А)3*q^(n-1)=768
   3*(1-q^n)=1023*(1-q)

q^(n-1)=256
(1-q^n)=341*(1-q)  или, что то же самое:  (q^n-1)=341*(q-1)
 Вероятно, все ж , q -целое, тогда  либо q=2  n=9
                                                          либо  4      n=5
                                                         либо 16      n=3
                                                                 256      n=2
Легко видеть, что годится только q=4 n=5
   ответ:   q=4    n=5
б)   243* (3^(-n)+1)=182*(1/3+1)
       243*(1-(-3)^(-n))=182*4/3
729 -3^6*(-3)^(-n)==728
(3^6)*(-3)^(-n)=1
ответ:
n=6
an=243*(-1/(3^5))=-1

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сколько корней имеет уравнение cos x= п/4?
Ваше имя (никнейм)*
Email*
Комментарий*