veronikagrabovskaya
?>

Найдите значение данного выражения!

Алгебра

Ответы

nv6634

\displaystyle \frac{2}{a^{\frac{1}{2}}-b^{\frac{1}{2}} - \frac{2a^{\frac{1}{2}}{a-b} = \\\\\\ \displaystyle \frac{2}{\sqrt{a}-\sqrt{b}} - \frac{2\sqrt{a}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})} = \\\\\\ \displaystyle \frac{2(\sqrt{a}+\sqrt{b})-2\sqrt{a}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})} = \\\\\\ \displaystyle \frac{2\sqrt{a}+2\sqrt{b}-2\sqrt{a}}{a-b} = \frac{2\sqrt{b}}{a-b}

При a = 7 \; , \; b = 9:

\displaystyle \frac{2\sqrt{b}}{a-b} = \frac{2\sqrt{9}}{7 - 9} = \\\\\\ \displaystyle \frac{2 \cdot 3}{- 2} = \frac{6}{-2} = \boxed{-3}


Найдите значение данного выражения!
Anastasiya81

24 см.

Объяснение:

Пусть один катет прямоугольного треугольника будет а см , а другой  bсм.

Тогда площадь равна 0,5*а* b, а  квадрат гипотенузы найдем по теореме Пифагора а² + b² . Так как по  условию площадь равна 24 см², а гипотенуза равна 10 см , то составляем систему уравнений:

\left \{ \begin{array}{lcl} {{0,5ab=24|*4,} \\ {a^{2}+b^{2}=100; }} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{2ab=96} \\ {a^{2}+b^{2} =100;}} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{2ab=96,} \\ {a^{2} +ab+b^{2} =196;}} \end{array} \right.\Leftrightarrow\\\\\left \{ \begin{array}{lcl} {{ab=48,} \\ {(a+b)^{2} =196;}} \end{array} \right.\Leftrightarrow

\left \{ \begin{array}{lcl} {{ab=48,} \\ {\left [ \begin{array}{lcl} {{a+b=14,} \\ {a+b=-14.}} \end{array} \right.}} \end{array} \right.\Leftrightarrow\left [ \begin{array}{lcl} {\left \{ \begin{array}{lcl} {{ab=48,} \\ {a+b=14;}} \end{array} \right.{} \\ {\left \{ \begin{array}{lcl} {{ab=48,} \\ {a+b=-14}.} \end{array} \right.}} \end{array} \right.

Так как a и b катеты прямоугольного треугольника , а значит положительные числа .Тогда их сумма не может быть отрицательным числом. Поэтому вторая система не подходит по смыслу задачи.

\left \{ \begin{array}{lcl} {{ab=48,} \\ {a+b=14;}} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{(14-b)*b=48,} \\ {a=14-b;}} \end{array} \right.\Leftrightarrow\left \{ \begin{array}{lcl} {{14b-b^{2} =48,} \\ {a=14-b;}} \end{array} \right.\Leftrightarrow\\\left \{ \begin{array}{lcl} {{b^{2} -14b+48=0,} \\ {a=14-b.}} \end{array} \right.

Решим квадратное уравнение:

b^{2} -14b+48=0;\\D{_1}= 49-48=10\\\left [ \begin{array}{lcl} {{b=6,} \\ {b=8.}} \end{array} \right.

 Если b=6, то а=8

 Если b=8, то а=6

Значит катеты прямоугольного треугольника 6 см и 8 см. Тогда периметр ( сумма длин всех сторон треугольника)

P= 6+8+10 = 24 (см)

Dmitrievich-Telishev

ответ:Второй велосипедист:
Расстояние - 88 км
Скорость - х км/ч
Время в пути - 88/х ч.

Первый велосипедист:
Расстояние - 88 км
Скорость - (х+3) км/ч
Время в пути - 88/ (х+3) ч.
Зная, что второй велосипедист затратил на весь путь больше времени на 3 часа.⇒ Уравнение.

88/х - 88/(х+3)= 3
Избавимся от знаменателя.
88(х+3) - 88х = 3* х*(х+3)
88х +264 - 88х = 3х²+9х
3х²+9х-264 =0
Раздели обе части уравнения на 3:
х²+3х -88=0
D= 9-4*(-88) = 9+352=361
x₁ = (-3-√361) /2 = (-3-19)/2= -11 - не удовл. условию задачи, т.к. скорость не может быть отрицательным значением.
х₂= (-3+19)/2= 16/2=8 км/ч - скорость второго велосипедиста, который и пришел вторым к финишу.
8+3= 11 км/ч - скорость первого велосипедиста
Проверим:
88/8 - 88/11 = 11 ч. - 8 ч.= 3 ч. - разница во времени
ответ: 8 км/ч скорость велосипедиста, который пришел вторым к финишу.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение данного выражения!
Ваше имя (никнейм)*
Email*
Комментарий*