Объяснение:
1.
a)5√2+2√32-√98= 5√2+2√(16*2)-√(49*2)= 5√2+2√(4²*2)-V(7²*2)=
=5√2+2*4√2-7√2= 5√2+8√2-7√2= 13√2-7√2=6√2
b)(4√3+2√21)*√3=4√3*√3+√27*√3=4√(3*3)=4√3²+√27*3)=4*3+√(81)= =12+√9²=12+9=21
c)(√5-√3)²=5-2√5*√3+3=5-√(2*18)+3=5-2√(3²)*2)+3=8-2*3√2=8-6√2
2.
1/2√28 i 1/3√54
√(1/2)²*28) i √(1/3²)*54)
√(1/4*28) i √(1/9)*54)
√7 > √6
3.
(√10 +5)/(2+√10) = (√10 +5)/(2+√10) *(2-√10)/(2-√10)=
=(√10+5)(2-√10) /(4-10)= (2√10-√10*√10+10-5√10)/(-6)=
=(-3√10-10+10)/(-6)=3√10/6=√10 / 2
Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим
4n+3<100
4n<97
n<24,25
Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа
4n+3≥10
4n≥7
n≥1,75
номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии
а₂=4*2+3=11
а₂₄=4*24+3=99
Сумма n последовательных членов арифметической прогрессии начиная с члена :
Sn=(а₁+аn)*n/2
т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим
S₂₃=(11+99)*23/2=1265
Удачи!
Поделитесь своими знаниями, ответьте на вопрос:
Прямоугольник со сторонами 6 см и 5 см в первый раз вращается вокруг большей стороны, а во второй – вокруг меньшей. Определите полученные геометрические тела и сравните площади их боковых поверхностей.
И в первом и во втором случае получается цилиндр.
S = 2πRh - площадь поверхности цилиндра .
Первый случай:
S = 2 * 3,14 * 3 * 5 = 94,2
Второй случай :
S = 2 * 3,14 * 6 * 2,5 = 94,2
Площади равны.