Буянто1346
?>

Значение производной функции в точке х=0 равно…

Алгебра

Ответы

testovvanya
Решение:
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим:
9 x^{2} +16 x^{2} = 2500 \\
25 x^{2} = 2500 \\
 x^{2} = 100 \\
x = б10
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
a_c=\frac{a^2}{c}
a - катет
с - гипотенуза
a с индексом с - отрезок.
a_c = \frac{900}{50}=18
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
ответ: 18 и 32 мм
Tane4ka2110
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Значение производной функции в точке х=0 равно…
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kate281078
Pautova1119
Aivazyan
adminaa
Aleksandrovich1075
snabomp
egorstebenev6
Komarovsergeysk
Daulyatyanov1266
shef3009
yuliyastatsenko3894
Маргарита794
osnovnoisklad3551
Ivanskvortsov25
btatarintsev