Пусть скор теч реки х км\ч
тогда скор теплохода по течению х+15
а против течения 15-х км\ч
если теплоход стоит 10 часов, то в пути в оба конца -30 часов
по течению 200: (15+х) часов
против течения 200: (15-х) часов
составим уравнение
200 : (15+х) + 200 : (15-х)=30
решить уравнение!
Перенесём всё в левую часть уравнения:
200/ (15+х) + 200/ (15-х) - 30 =0
Упростим уравнение (приведем к общему знаменателю):
200(15-х) + 200(15+х)-30 (15+х)(15-х)=0
В левой части возможно применение формулы разности квадратов:
(15+х)(15-х)=15 в квадрате - х в квадрате = 225 - х в квадрате
получим: 200(15-х) + 200(15+х) - 30 (225- х в квадрате) = 0
расскроем скобки: 3000 - 200х + 3000 + 200х - 6750 + 30х в квадрате = 0
красиво сокращаем и получаем : 30х в квадрате - 750 = 0
осталось выразить х : 30х в квадрате - 750=0
30х в квадрате=750
тут пишем дробью: х в квадрате = 750/30=25
х= под корнем 25=5
ответ: 5км/ч
Поделитесь своими знаниями, ответьте на вопрос:
Вычислить криволинейный интеграл по координатам
421/20
Объяснение:
Имеем Подставим данные выражения в подынтегральное и будем интегрировать по направлению x от 1 до 4: