В решении.
Объяснение:
9) 7а/3ху² привести к дроби со знаменателем 15х²у³.
Нужно "новый" знаменатель разделить на "старый", получим дополнительный множитель для числителя, умножить, получим новую дробь:
15х²у³ : 3ху² = 5ху;
5ху * 7а = 35аху;
Новая дробь: 35аху/15х²у³.
1) (х⁷ + х⁵)/(х⁴ + х²) =
= (х⁵(х² + 1))/(х²(х² + 1)) =
= х⁵/х² = х³;
3) (а⁷ - а¹⁰)/(а⁵ - а²) =
= (а⁷(1 - а³))/(а²(а³ - 1)) =
= a⁵(1 - а³)(а³ - 1);
4) (х⁶ - х⁴)/(х³ + х²) =
= (х⁴(х² - 1))/(х²(х + 1)) =
= (х⁴(х - 1)(х + 1))/(х²(х + 1)) =
= х²(х - 1);
5) (а - 2b)/(2b - a) = нет сокращения.
6) (4(a - b)²)/(2b - 2a) =
= (4(a - b)²)/(2(b - a)) =
= 2(a - b)²/(b - a);
7) (-a - b)²/(a + b) =
= -(a + b)²/(a + b) =
= -(a + b).
пусть х - одно число, а у - второе, тогда имеем систему уравнений
Из первого уравнения получаем х1=-5 и х2=3. Подставляем во второе, получаем у1=-16 у2=-8
ответ: 2 решения (-5, -16) и (3, -8)
2.Обозначение: х – первое число; у – второе число
Система:
(х+у)/(у-х) = 8
х^2 – y^2 =128
Из первого уравнения у = (7/9)х
Подставляем во второе уравнение.
Получим два корня квадратного уравнения: х1 = 24; х2 = - 24.
Соответственно, у1 = 56/3; у2 = -56/3
ответ: задача имеет два решения:
х1 = 24; у1 = 56/3;
и
х2 = - 24; у2 = -56/3.
Поделитесь своими знаниями, ответьте на вопрос:
Квадратные уравнения x^2+2x+10=0
ответ: –1 ± 3i.