Styazhkin395
?>

решить это уравнение. ответ:

Алгебра

Ответы

Pavel1545

\sin^{8}x + \cos^{8}x = \dfrac{17}{16} \cos^{2}2x

(\sin^{2}x)^{4} + (\cos^{2}x)^{4} = \dfrac{17}{16} \cos^{2}2x

\left(\dfrac{1 - \cos 2x}{2} \right)^{4} + \left(\dfrac{1 + \cos 2x}{2} \right)^{4} = \dfrac{17}{16} \cos^{2}2x \ \ \ | \cdot 16

(1 - \cos 2x)^{4} + (1 + \cos 2x)^{4} = 17 \cos^{2}2x

(1) \ (1 - \cos 2x)^{4} = 1 - 4\cos 2x + 6\cos^{2} 2x - 4\cos^{3}2x + \cos^{4}2x\\(2) \ (1 + \cos 2x)^{4} = 1 + 4\cos 2x + 6\cos^{2} 2x + 4\cos^{3}2x + \cos^{4}2x

Складываем (1) и (2) выражения и получаем:

2 + 12 \cos^{2} 2x + 2\cos^{4}2x = 17\cos^{2}2x

2\cos^{4}2x - 5\cos^{2}2x + 2 = 0

Замена: \cos^{2} 2x = t, \ t \in [0; \ 1]

Характеристическое уравнение:

2t^{2} - 5t + 2 = 0

D = (-5)^{2} - 4 \cdot 2 \cdot 2 = 25 - 16 = 9

t_{1} = \dfrac{5 + \sqrt{9}}{2 \cdot 2} = \dfrac{5 + 3}{4} = 2 1 — не удовлетворяет условию

t_{2} = \dfrac{5 - \sqrt{9}}{2 \cdot 2} = \dfrac{5 - 3}{4} = \dfrac{1}{2}

Обратная замена:

\cos^{2} 2x = \dfrac{1}{2}

\displaystyle \left [ {{\cos 2x = \sqrt{\dfrac{1}{2} } \ \ } \atop {\cos 2x = -\sqrt{\dfrac{1}{2}}} \right.

\displaystyle \left [ {{\cos 2x = \dfrac{\sqrt{2}}{2} \ \ \ \ \ (1) } \atop {\cos 2x = -\dfrac{\sqrt{2}}{2} \ \ \ (2)} \right.

Решим (1) уравнение:

\cos 2x = \dfrac{\sqrt{2}}{2}

2x = \pm \arccos \dfrac{\sqrt{2}}{2} + 2\pi n, \ n \in Z

2x = \pm \dfrac{\pi}{4} + 2\pi n, \ n \in Z

x = \pm \dfrac{\pi}{8} + \pi n , \ n \in Z

Решим (2) уравнение:

\cos 2x = -\dfrac{\sqrt{2}}{2}

2x = \pm \arccos \left( -\dfrac{\sqrt{2}}{2}\right) + 2\pi n, \ n \in Z

2x = \pm \left(\pi - \arccos \dfrac{\sqrt{2}}{2} \right) + 2 \pi n, \ n \in Z

2x = \pm \left(\pi - \dfrac{\pi}{4} \right) + 2 \pi n, \ n \in Z

2x = \pm \dfrac{3\pi}{4} + 2\pi n, \ n \in Z

x = \pm \dfrac{3\pi}{8} + \pi n , \ n \in Z

Изобразим полученные ответы на единичной окружности и найдем общее решение.

Из рисунка видим, что через каждые \dfrac{\pi}{4} получаем ответ.

Таким образом, общий ответ:

x = \dfrac{\pi}{8} + \dfrac{\pi n}{4}, \ n \in Z

ответ: x = \dfrac{\pi}{8} + \dfrac{\pi n}{4}, \ n \in Z


решить это уравнение. ответ:
studiojanara
У=6х - прямая пропорциональность, графиком является прямая, коэффициент пропорциональности к=6>0, т.е. угол наклона прямой - острый, значит график расположен в 1 и 3 четверти.
у=0,5х+4 - линейная зависимость, графиком является прямая, коэффициент пропорциональности к=0,5>0, т.е. угол наклона прямой - острый; эту прямую можно построить сдвигом прямой у=0,5х на 4 единицы вверх вдоль оси ординат, значит график расположен в 1,2 и 3 четвертях.
у=3х-1 -  линейная зависимость, графиком является прямая, коэффициент пропорциональности к=3>0, т.е. угол наклона прямой - острый; эту прямую можно построить сдвигом прямой у=3х на 1 единицу вниз вдоль оси ординат, значит график расположен в 1,4 и 3 четвертях.
у=-3 - прямая, параллельная оси абсцисс с постоянной ординатой -3, значит график расположен в 3 и 4 четвертях.
arionul-secondary2

Смотри в файле

Смотри : есть всего 4 варианта точек и скобочек:

если точка закрашена и в начале отрезка( слева) , то скобочка        [

если точка закрашена и в конце отрезка( справа) , то скобочка       ]

если точка пустая в середине и в начале отрезка , то скобочка   (

если точка пустая в середине и в конце отрезка( справа) , то скобочка  )

остальное в файлах  

если закрашена( значит точка принадлежит отрезку и будут такие знаки математические  ≥ ≤ больши и равно , меньше и равно)

если пустая точка( то не принадлежит этому отрезку и знаки математические > < ,"Больше" или "меньше")


Алгебра 8 класс. тут не очень сложн, но я все равно не понимаю
Алгебра 8 класс. тут не очень сложн, но я все равно не понимаю

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить это уравнение. ответ:
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

agrilandrussia
andreokiseleo69421
pechatlogo4
tnkul
ekattatarenko
Sinelnikov1650
kotikdmytriy11
n-896458
aprelevka
Seid-ZadeNadezhda1769
vsnimschikov391
чухловина209
gernovoy
rusmoney92
lavr74