Eduard Popik
?>

Видомо що 3x3y4=7 Знайдіть значення виразу. 2, 4 x3y4

Алгебра

Ответы

valentinakarma2800

3*3*у⁴=7⇒у⁴=7/9,

2.4 x³y⁴= 2.4 x³*7/9=5.6х³/3=56х³/30=28х³/15

Yuliya Aleksandr282
1tg(-a)*cosa+sina=-tga*cosa+sina=-sina*cosa/cosa +sina=-sina+sina=0 2 cos²a*tg²(-a)-1=cos²a*tg²a-1=cos²a*sin²a/cos²a-1=sin²a-1=-cos²a 3 ctg(-b)*sinb/cosb=-ctgb*sinb/cosb=-cosb*sinb/(sinb*cosb)=-1 4 (1-tg(-x))/(sinx+cos(-x))=(1+tgx)/(sinx+cosx)=(1+sinx/cosx)*1/(sinx+cosx)= =(cosx+sinx)/cosx*1/(sinx+cosx)=1/cosx 5 ctga*sin(-a)-cos(-a)=-ctga*sina-cosa=-cosa*sina/sina-cosa=-cosa-cosa= =-2cosa 6 tg(-u)ctgu+sin²u=-tgu*ctgu+sin²u=-1+sin²u=-cos²u 7 (1-sin²(-y))/(cosy=(1-sin²y)/cosy=cos²y/cosy=cosy 8 (tg(-x)+1)/(1-ctgx)=(-tgx+1)/(1-ctgx)=(-sinx/cosx+1): (1-cosx/sinx)= =(cosx-sinx)/cosx*sinx/(sinx-cosx)=-tgx
brovkinay
Решение
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2)  log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Видомо що 3x3y4=7 Знайдіть значення виразу. 2, 4 x3y4
Ваше имя (никнейм)*
Email*
Комментарий*