Решение. В данном случае объем выборки n = 15. Упорядочим элементы выборки по величине, получим вариационный ряд 2, 2, 3, 4, 4, 5, 5, 5, 7, 7, 7, 7, 10, 10. Найдем размах выборки ω=10-2= 8. Различными в заданной выборке являются элементы z1 = 2, z2 =3, z3 = 4 , z4 = 5 , z5 = 7 , z6 = 10 ; их частоты соответственно равны n1 = 3, n2=1, n3 = 2, n4 = 3 , n5 = 4, n6 = 2. Статистический ряд исходной выборки можно записать в виде следующей таблицы:
zi
ni
Для контроля правильности записи находим . При большом объеме выборки ее элементы рекомендуется объединять в группы (разряды), представляя результаты опытов в виде группированного статистического ряда. В этом случае интервал, содержащий все элементы выборки, разбивается на k непересекающихся интервалов. Вычисления упрощаются, если эти интервалы имеют одинаковую длину . В дальнейшем рассматривается именно этот случай. После того как частичные интервалы выбраны, определяют частоты - количество ni элементов выборки, попавших в i-й интервал (элемент, совпадающий с верхней границей интервала, относится к следующему интервалу). Получающийся статистический ряд в верхней строке содержит середины zi интервалов группировки, а в нижней — частоты ni (i = 1
Объяснение:
Наверное так( не моя работа, взял с другого ответа)
Пространство: «Он нарочно для нее прорезал отверстие в своей двери, и она как будто чувствовала, что только в Герасимовой каморке она была полная хозяйка, и потому, войдя в нее, тотчас с довольным видом вскакивала на кровать»,
«Перед окном был разбит палисадник, и на самой средней клумбе, под розовым кусточком, лежала Муму и тщательно грызла кость».
Время:
«Уже смеркалось, как он вернулся».
«На другое утро Герасим вышел из своей каморки на работу. К обеду он пришел, поел и ушел опять, никому не поклонившись».
Поделитесь своими знаниями, ответьте на вопрос:
Перечислите через точку с запятой слова, замененные многоточием: Чтобы найти частное двух степеней с одинаковыми основаниями надо основание ..., а из показателя степени ... ... показатель степени ... (4 многоточия
Чтобы найти частное двух степеней с одинаковыми основаниями надо основание оставить прежним, а из показателя степени делимого вычесть показатель степени делителя.