Ask___
Advice
Главная
О сервисе
О нас
Правила пользования сайтом
Авторское право
Политика конфиденциальности
Задать вопрос
Искать
Главная
Алгебра
Ответы на вопрос
silantyevevgeny
12.08.2021
?>
Решите систему графическим методом2x+y=53х-2y=-3
Алгебра
Ответить
Ответы
klimenko05
12.08.2021
Условие существования экстремума: f'(x) = 0.
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
mbykovskiy
12.08.2021
Условие существования экстремума: f'(x) = 0.
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решите систему графическим методом2x+y=53х-2y=-3
Ваше имя (никнейм)*
Email*
Комментарий*
Согласен с
политикой конфиденциальности
Отправить вопрос
▲
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -