vps1050
?>

Ребята только найти нули функций​

Алгебра

Ответы

andrew55588201824

Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.

Решение.

Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12

Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17

Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68

Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Объяснение:

klimovala2
Дана функция:y=x^2+2x-8

Что бы построить график данной функции, исследуем данную функцию:

1. Область определения:
Так как данная функция имеет смысл при любом х. То:
D(y)=(-\infty,+\infty)

2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.

Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
\displaystyle E(y)=\left[- \frac{D}{4a},+\infty\right) - где D дискриминант.

Найдем дискриминант:
D=b^2-4ac=4+32=36

Теперь находим саму область:
\displaystyle E(y)=\left[-\frac{36}{4},+\infty \right)=[-9,+\infty)

3. Нули функции:
Всё что требуется , это решить уравнение.

\displaystyle x^2+2x-8=0\\\\x_{1,2}= \frac{-2\pm \sqrt{36} }{2} = \frac{-2\pm6}{2}=(-4),2

Следовательно, функция равна нулю в следующих точках:
(2,0)\\(-4,0)

4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
(-\infty,-4) \rightarrow +\\(-4,2)\rightarrow -\\(2,+\infty)\rightarrow +

То есть:
f\ \textgreater \ 0 \rightarrow (-\infty,-4)\cup(2,+\infty)\\f\ \textless \ 0\rightarrow (-4,2)

5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
\displaystyle x_{\text{Bep.}}=- \frac{b}{2a} =- \frac{2}{2} =-1\\\\y_{\text{Bep.}}=(-1)^2+2\cdot(-1)-8=-9

Промежуток убывания:
(-\infty,-1]

Промежуток возрастания:
[-1,+\infty)

Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
y(x)_{\min}=y(-1)=-9
---------------------------------------------------------------
7. Ось симметрии

Зная вершину, имеем следующее уравнение оси симметрии:
x=-1

Основываясь на данных, строим график данной функции. (во вложении).

Плстройте график функции y=x в квадрате +2x-8

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Ребята только найти нули функций​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Любовь
julia3594265843
tetralek
obelov
Kulikov1065
Galina3241
tigran87-87
Оздоевский
kapriz1999
ivan-chay19
Ананян Иван1281
mariy-y34
schumacher8
Ragim777hazarovich
annademidova-74