БашуроваОльга369
?>

Решите систему нелинейных уравнений с двумя переменными алгебраическим сложением.​

Алгебра

Ответы

Emasterova77
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
Ольга тимур
Найдем сначала общее решение соответствующего однородного уравнения 
   y''-y'=0

Осуществив замену y=e^{kx}, получим характеристическое уравнение

k^2-k=0,~~~ k (k-1)=0,~~~~ k_1=0;~~~~ k_2=1

уо.о. = C_1+C_2e^x - общее решение однородного уравнения

Рассмотрим f(x)=x+1

P_n(x)=x+1~~~\Rightarrow~~~ n=1;~~~~ \alpha =0

Сравнивая \alpha с корнями характеристического уравнения, и принимая во внимания что n=1, частное решение будем искать в виде:

yч.н. = x*(Ax+B) = Ax² + Bx

Найдем первые две производные

y' = 2Ax+B
y'' = 2A

И подставим это в исходное уравнение

2A-2Ax-B=x+1

Приравниваем коэффициенты при степени х

\displaystyle \left \{ {{-2A=1} \atop {2A-B=1}} \right. ~~\Rightarrow~~~~ \left \{ {{A=-0.5} \atop {B=-2}} \right.

Частное решение: уч.н. = -0.5x^2-2x

Общее решение соответствующего неоднородного уравнения

уо.н. = уо.о. + уч.н. = C_1+C_2e^{x}-0.5x^2-2x

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите систему нелинейных уравнений с двумя переменными алгебраическим сложением.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mariia39
Anna572
avtalux527
temik10808564
bikemaster
levsha-27509
annakorotaev3
Elvira-Natalya
Struev730
orb-barmanager
shangina1997507
Решите уравнение, !
coffeenik20233
Штакина1568
esnails17
v-zhigulin1