а) 330
б)
в)
Объяснение:
Буду объяснять каждое задание по отдельности. , Согласен, предыдущие выкладки были неправильными. В силу недопонимания во мною, либо двоякостью постановки во Число сочетаний из x по n равно биномиальному коэффициенту
Сₓⁿ= знак равенства не очень ровно размещён относительно дроби.
5 студентов хотят ехать снизу, а 4 сверху. Размещаем их по пожеланию.
a) Если порядок размещения пассажиров как снизу, так и сверху не учитывается то нет их перестановок.
Разместив пятерых студентов снизу и четырёх сверху имеем 7 свободных мест на верхних и 4 на нижних полках. Далее, нужно разместить 11 студентов с расчётом того что не учитываем их перестановок. Значит кол-во комбинаций равно С₁₁⁷·С₄⁴==8·9·10·11÷(1·2·3·4)=330
Аналогично получим С₁₁⁴С₇⁷=330
С₄⁴ здесь не обязательно. Оставим его для определённости последующих решений.
Поделитесь своими знаниями, ответьте на вопрос:
нужно нарисовать на координатной плоскости рыбку (-4;2), (-3:4), (2;4), (3;3), (5;2), (7;0), (5;-2), (3;-2), (2;-4), (0;-4), (-1;-2), (-5;0), (-7;-2), (-8;-1), (-7;1), (-8;3), (-7;4), (-5;2), (-2;2), (0;3) и глаз (5:0)
ответ:
tg ∠ spo=sp: op=13: 2=6,5
объяснение:
нарисуем пирамиду, проведем в ней сечение мsk.
мк - средняя линия треугольника cdb, параллельна db и равна ее половине.
диагональ ас квадрата авсd равна диагонали db
ор - четверть этой диагонали и равна 8: 4=2 (из треугольника cdb, в котором высота делится отрезком мк пополам).
sр- высота, биссектриса и медиана треугольного сечения мsk.
небоходимо найти tg ∠ spo, под которым сечение пересекается с плоскостью пирамиды.
нарисуем отдельно треугольник pso.
tg ∠ spo=sp: op=13: 2=6,5