ответ:
нет корней
объяснение:
[tex]x=2-\sqrt{2x-5}; {2x-5} =2-x; \{ \begin{array}{lcl} {{2-x\geq0,} \\ {2x-5=(2-x)^{2} ; }} \end{array} \right.\leftrightarrow \left \{ \begin{array}{lcl} {{x\leq 2,} \\ {2x-5=4-4x+x^{2}; }} \end{array} \right.\leftrightarrow \left \{ \begin{array}{lcl} {{x\leq 2,} \\ {x^{2} -6x+9=0}; } \end{array} \{ \begin{array}{lcl} {{x\leq 2,} \\ {(x-3)^{2} =0; }} \end{array} \right.\leftrightarrow\left \{ \begin{array}{lcl} {{x\leq 2,} \\ {x=3; }} \end{array} /tex]
система не имеет решений.значит уравнение не имеет корней.
Объяснение:
Войти
АнонимМатематика11 июля 20:08
Найдите промежутки возрастания и убывания, наименьшее значение функции у = x2- 4х - 5
ответ или решение1
Лебедев Яков
Имеем функцию y = x^2 - 4 * x - 5.
Найдем промежутки возрастания, убывания и наименьшее значение функции.
Для начала находим производную функции:
y' = 2 * x - 4.
Промежуток возрастания- промежуток функции, где каждому большему значению аргумента соответствует большее значение функции. На промежутке возрастания производная функции больше нуля.
2 * x - 4 > 0;
x > 2 - промежуток возрастания функции.
Соответственно, для промежутка убывания получаем:
2 * x - 4 < 0;
x < 2 - промежуток убывания функции.
x = 2 - ноль функции. Найдем значение функции от данного аргумента:
y = 4 - 8 - 5 = -9 - наименьшее значение функции.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите область определения выражения (х+4): (7-х
(-бесконечность;7)U(7;+бесконечность)
Объяснение: